
www.odtug.com 1 ODTUG Kscope14

NOSQL AND BIG DATA FOR THE ORACLE

PROFESSIONAL
Iggy Fernandez, NoCOUG

In this paper, I will dissect and demystify NoSQL technology. The relational camp derides NoSQL technology because

NoSQL technology does not play by the rules of the relational camp. Therefore the relational camp is ignoring the

opportunity to incorporate the innovations of the NoSQL camp into mainstream database management systems. For its part,

the NoSQL camp derides the relational model as unable to satisfy the performance, scalability, and availability needs

of today. I claim that the NoSQL camp derides the relational model because it does not sufficiently understand it. I will go so

far as to claim that the NoSQL camp does not fully understand its own innovations; it believes that they are incompatible

with the relational model and it therefore does not see the opportunity to strengthen the relational model. A very strong

assertion which I will defend as I go along.

Disruptive Innovation
NoSQL technology is a “disruptive innovation” in the sense used by Harvard professor Clayton M. Christensen. In The

Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail, Professor Christensen defines disruptive

innovations and explains why it is dangerous to ignore them:

“Generally, disruptive innovations were technologically straightforward, consisting of off-the-shelf components put

together in a product architecture that was often simpler than prior approaches. They offered less of what customers in

established markets wanted and so could rarely be initially employed there. They offered a different package of

attributes valued only in emerging markets remote from, and unimportant to, the mainstream.”

Established players usually ignore disruptive innovations because they do not see them as a threat to their bottom lines. In

fact, they are more than happy to abandon the low-margin segments of the market and their profitability actually increases

when they do so. The disruptive technologies eventually take over most of the market.

An example of a disruptive innovation is the personal computer. The personal computer was initially targeted only at the

home computing segment of the market. Established manufacturers of mainframe computers and minicomputers did not see

PC technology as a threat to their bottom lines. Eventually, however, PC technology came to dominate the market and

established computer manufacturers such as Digital Equipment Corporation, Prime, Wang, Nixdorf, Apollo, and Silicon

Graphics went out of business.

So where lies the dilemma? Professor Christensen explains:

“In every company, every day, every year, people are going into senior management, knocking on the door saying: ‘I got

a new product for us.’ And some of those entail making better products that you can sell for higher prices to your best

customers. A disruptive innovation generally has to cause you to go after new markets, people who aren’t your

customers. And the product that you want to sell them is something that is just so much more affordable and simple that

your current customers can’t buy it. And so the choice that you have to make is: Should we make better products that we

can sell for better profits to our best customers. Or maybe we ought to make worse products that none of our customers

would buy that would ruin our margins. What should we do? And that really is the dilemma.”

Exactly in the manner that Christensen described, the e-commerce pioneer Amazon.com created an in-house product called

Dynamo in 2007 to meet the performance, scalability, and availability needs of its own e-commerce platform after it

concluded that mainstream database management systems were not capable of satisfying those needs. The most notable

aspect of Dynamo was the apparent break with the relational model; there was no mention of relations, relational algebra, or

SQL.

I recommend that you take the time to listen to this five-minute YouTube video by Professor Christensen before reading the

remainder of the series.

http://www.amazon.com/The-Innovators-Dilemma-Technologies-Management/dp/142219602X/
http://www.amazon.com/The-Innovators-Dilemma-Technologies-Management/dp/142219602X/
http://www.youtube.com/watch?v=qDrMAzCHFUU

NoSQL and Big Data Fernandez

www.odtug.com 2 ODTUG Kscope14

Requirements and Assumptions
As I mentioned, the NoSQL movement got its big boost from the e-commerce giant Amazon. Amazon started out by using

Oracle Database for its e-commerce platform but later switched to a proprietary database management system called Dynamo

that it built in-house. Dynamo is the archetypal NoSQL product; it embodies all the innovations of the NoSQL camp. The

Dynamo requirements and assumptions are documented in the paper Dynamo: Amazon’s Highly Available Key-value

Store published in 2007. Here are some excerpts from that paper:

“Customers should be able to view and add items to their shopping cart even if disks are failing, network routes are

flapping, or data centers are being destroyed by tornados. Therefore, the service responsible for managing shopping

carts requires that it can always write to and read from its data store, and that its data needs to be available across

multiple data centers.”

“There are many services on Amazon’s platform that only need primary-key access to a data store. For many services,

such as those that provide best seller lists, shopping carts, customer preferences, session management, sales rank, and

product catalog, the common pattern of using a relational database would lead to inefficiencies and limit scale and

availability. Dynamo provides a simple primary-key only interface to meet the requirements of these applications.”

“Experience at Amazon has shown that data stores that provide ACID guarantees tend to have poor availability.”

“Dynamo targets applications that operate with weaker consistency (the “C” in ACID) if this results in high

availability.”

“… since each service uses its distinct instance of Dynamo, its initial design targets a scale of up to hundreds of storage

hosts.”

To paraphrase, Amazon’s requirements were extreme performance, extreme scalability, and extreme availability, surpassing

anything that had ever been achieved before. Also, Amazon’s prior experience with the relational model led it to conclude

that the only way to satisfy these requirements was to stop playing by the rules of the relational camp. If you belong in the

relational camp, please suspend disbelief while I explain how Amazon achieved its ends. You will be in a better position to

pass judgment on NoSQL technology once you understand each Amazon innovation.

Functional Segmentation
Amazon’s pivotal design decision was to break its monolithic enterprise-wide database service into simpler component

services such as a best-seller list service, a shopping cart service, a customer preferences service, a sales rank service, and a

product catalog service. This avoided a single point of failure. In an interview for the NoCOUG Journal, Amazon’s first

database administrator, Jeremiah Wilton explains the rationale behind Amazon’s approach:

“The best availability in the industry comes from application software that is predicated upon a surprising assumption:

The databases upon which the software relies will inevitably fail. The better the software’s ability to continue operating

in such a situation, the higher the overall service’s availability will be. But isn’t Oracle unbreakable? At the database

level, regardless of the measures taken to improve availability, outages will occur from time to time. An outage may be

from a required upgrade or a bug. Knowing this, if you engineer application software to handle this eventuality, then a

database outage will have less or no impact on end users. In summary, there are many ways to improve a single

database’s availability. But the highest availability comes from thoughtful engineering of the entire application

architecture.”

As an example, the shopping cart service should not be affected if the checkout service is unavailable or not performing well.

I said that this was the pivotal design decision made by Amazon. I cannot emphasize this enough. If you resist functional

segmentation, you are not ready for NoSQL. If you miss the point, you will not understand NoSQL.

Note that functional segmentation results in simple hierarchical schemas. Here is an example of a simple hierarchical schema

from Ted Codd’s 1970 paper on the relational model, meticulously reproduced in the 100
th

 issue of the NoCOUG Journal.

This schema stores information about employees, their children, their job histories, and their salary histories.

employee (man#, name, birthdate)

children (man#, childname, birthyear)

jobhistory (man#, jobdate, title)

salaryhistory (man#, jobdate, salarydate, salary)

Functional segmentation is the underpinning of NoSQL technology but it does not present a conflict with the relational

model; it is simply a physical database design decision. Each functional segment is usually assigned its own

http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf
http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf
http://www.nocoug.org/Journal/NoCOUG_Journal_200711.pdf#page=4
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf#page=10

NoSQL and Big Data Fernandez

www.odtug.com 3 ODTUG Kscope14

standalone database. The collection of functional segments could be regarded as a single distributed database. However,

distributed transactions are verboten in the NoSQL world. Functional segmentation can therefore result in temporary

inconsistencies if, for example, the shopping cart data is not in the same database as the product catalog and occasional

inconsistencies result. Occasionally, an item that is present in a shopping cart may go out of stock. Occasionally, an item that

is present in a shopping cart may be repriced. The problems can be resolved when the customer decides to check out, if not

earlier. As an Amazon customer, I occasionally leave items in my shopping cart but don’t complete a purchase. When I

resume shopping, I sometimes get a notification that an item in my shopping chart is no longer in stock or has been repriced.

This technique is called “eventual consistency” and the application is responsible for ensuring that inconsistencies are

eventually corrected. Randy Shoup, one of the architects of eBay’s ecommerce platform, explains how:

“At eBay, we allow absolutely no client-side or distributed transactions of any kind – no two-phase commit. In certain

well-defined situations, we will combine multiple statements on a single database into a single transactional operation.

For the most part, however, individual statements are auto-committed. While this intentional relaxation of orthodox

ACID properties does not guarantee immediate consistency everywhere, the reality is that most systems are available the

vast majority of the time. Of course, we do employ various techniques to help the system reach eventual consistency:

careful ordering of database operations, asynchronous recovery events, and reconciliation or settlement batches. We

choose the technique according to the consistency demands of the particular use case.” (Scalability Best Practices:

Lessons from eBay)

The eventual consistency technique receives a lot of attention because it is supposedly in conflict with the relational model.

We will return to this subject later in this series and argue that eventual consistency is not in conflict with the relational

model.

Sharding
Amazon’s next design decision was “sharding” or horizontal partitioning of all the tables in a hierarchical schema. Hash-

partitioning is typically used. Each table is partitioned in the same way as the other tables in the schema and each set of

partitions is placed in a separate database referred to as a “shard.” The shards are independent of each other; that is, there is

no clustering (as in Oracle RAC) or federation (as in IBM DB2).

Note that the hierarchical schemas that result from functional segmentation are always shardable; that is, hierarchical

schemas are shardable by definition.

Returning to the example from Ted Codd’s 1970 paper on the relational model:

employee (man#, name, birthdate) with primary key (man#)

children (man#, childname, birthyear) with primary key (man#, childname)

jobhistory (man#, jobdate, title) with primary key (man#, jobdate)

salaryhistory (man#, jobdate, salarydate, salary) with primary key (man#, jobdate, salarydate)

Note that the jobhistory, salaryhistory, and children tables have composite keys. In each case, the leading column of the

composite key is the man#. Therefore, all four tables can be partitioned using the man#.

Sharding is an essential component of NoSQL designs but it does not present a conflict with the relational model; it too is

simply a physical database design decision. In the relational model, the collection of standalone databases or shards can be

logically viewed as a single distributed database.

Replication and Eventual Consistency
By now, you must be wondering when I’m going to get around to explaining how to create a NoSQL database. When I was a

junior programmer, quite early in my career, my friends and I were assigned to work on a big software development project

for which we would have to use technologies with which we were completely unfamiliar. We were promised that training

would be provided before the project started. The very first thing the instructor said was (paraphrasing) “First you have to

insert your definitions into the C.D.D.” and he walked to the board and wrote the commands that we needed for the purpose.

Needless to say, we were quite flustered because we had no idea what those “definitions” might be or what a “C.D.D.” was

and how it fit into the big picture.

NoSQL is being taught without reference to the big picture. None of the current books on NoSQL mention functional

segmentation even though it is the underpinning principle of NoSQL. All the current books on NoSQL imply that NoSQL

principles are in conflict with the relational model. If you are in a hurry to create your first NoSQL database, I can

recommend Seven Databases in Seven Weeks: A Guide to Modern Databases and the NoSQL Movement. But as one of the

http://www.infoq.com/articles/ebay-scalability-best-practices
http://www.infoq.com/articles/ebay-scalability-best-practices
http://www.amazon.com/Seven-Databases-Weeks-Modern-Movement/dp/1934356921

NoSQL and Big Data Fernandez

www.odtug.com 4 ODTUG Kscope14

world’s greatest geniuses Leonardo da Vinci has said: “Those who are in love with practice without science are like the

sailor who gets into a ship without rudder or compass, who is never certain where he is going. Practice must always be built

on sound theory … The painter who copies by practice and judgement of eye, without rules, is like a mirror which imitates

within itself all the things placed before it without any understanding of them.” (On the errors of those who rely on practice

without science).

Continuing the train of thought from the previous section, the Dynamo developers saw that one of the keys to extreme

availability was data replication. Multiple copies of the shopping cart are allowed to exist and, if one of the replicas becomes

unresponsive, the data can be served by one of the other replicas. However, because of network latencies, the copies may

occasionally get out of sync and the customer may occasionally encounter a stale version of the shopping cart. Once again,

this can be handled appropriately by the application tier; the node that falls behind can catch up eventually or inconsistencies

can be detected and resolved at an opportune time, such as at checkout. This technique is called “eventual consistency.”

The inventor of relational theory, Dr. Codd, was acutely aware of the potential overhead of consistency checking. In his 1970

paper, he said:

“There are, of course, several possible ways in which a system can detect inconsistencies and respond to them. In one

approach the system checks for possible inconsistency whenever an insertion, deletion, or key update occurs. Naturally,

such checking will slow these operations down. [emphasis added] If an inconsistency has been generated, details are

logged internally, and if it is not remedied within some reasonable time interval, either the user or someone responsible

for the security and integrity of the data is notified. Another approach is to conduct consistency checking as a batch

operation once a day or less frequently.”

In other words, the inventor of relational theory would not have found a conflict between his relational model and the

“eventual consistency” that is one of the hallmarks of the NoSQL products of today. However, the Dynamo developers

imagined a conflict because it quite understandably conflated the relational model with the ACID guarantees of database

management systems. However, ACID has nothing to do with the relational model per se (although relational theory does

come in very handy in defining consistency constraints); pre-relational database management systems such as IMS provided

ACID guarantees and so did post-relational object-oriented database management systems.

I should not defend eventual consistency simply by using a convenient quote from the writings of Dr. Codd. “The devil can

cite Scripture for his purpose. An evil soul producing holy witness is like a villain with a smiling cheek, a goodly apple rotten

at the heart. O, what a goodly outside falsehood hath!” (from the Shakespeare play The Merchant of Venice) If I am in favor

of eventual consistency, I should explain why, not simply quote from the writings of Dr. Codd. If I can defend my own

beliefs, I free myself to disagree with Dr. Codd as I plan to do later in this series. I have in fact come to accept that real-time

consistency checking should be a design choice not a scriptural mandate. I may have had a different opinion in the

past but “a foolish consistency is the hobgoblin of little minds, adored by little statesmen and philosophers and divines. …

Speak what you think now in hard words, and to-morrow speak what to-morrow thinks in hard words again, though it

contradict every thing you said to-day.” (from the Emerson essay Self-Reliance).

The tradeoff between consistency and performance is as important in the wired world of today as it was in Dr. Codd’s world.

We cannot cast stones at Dynamo for the infraction of not guaranteeing the synchronization of replicated data (or allowing

temporary inconsistencies between functional segments), because violations of the consistency requirement are equally

commonplace in the relational camp. The replication technique used by Dynamo has a close parallel in the technique of

“multimaster replication” used in the relational camp. Application developers in the relational camp are warned about the

negative impact of integrity constraints.
1,2, 3,4

 And, most importantly, no mainstream DBMS currently implements the SQL-

92 “CREATE ASSERTION” feature that is necessary to provide the consistency guarantee. For a detailed analysis of this

1
 “Using primary and foreign keys can impact performance. Avoid using them when possible.”

(http://docs.oracle.com/cd/E17904_01/core.1111/e10108/adapters.htm#BABCCCIH)
2
 “For performance reasons, the Oracle BPEL Process Manager, Oracle Mediator, human workflow, Oracle B2B, SOA

Infrastructure, and Oracle BPM Suite schemas have no foreign key constraints to enforce integrity.”

(http://docs.oracle.com/cd/E23943_01/admin.1111/e10226/soaadmin_partition.htm#CJHCJIJI)
3
 “For database independence, applications typically do not store the primary key-foreign key relationships in the database

itself; rather, the relationships are enforced in the application.”

(http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e14496/securing.htm#CHDDGFHH)
4
 “The ETL process commonly verifies that certain constraints are true. For example, it can validate all of the foreign keys in

the data coming into the fact table. This means that you can trust it to provide clean data, instead of implementing

constraints in the data warehouse.” (http://docs.oracle.com/cd/E24693_01/server.11203/e16579/constra.htm#i1006300)

http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf#page=10
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf#page=10
http://docs.oracle.com/cd/E17904_01/core.1111/e10108/adapters.htm#BABCCCIH
http://docs.oracle.com/cd/E23943_01/admin.1111/e10226/soaadmin_partition.htm#CJHCJIJI
http://docs.oracle.com/cd/E25178_01/fusionapps.1111/e14496/securing.htm#CHDDGFHH
http://docs.oracle.com/cd/E24693_01/server.11203/e16579/constra.htm#i1006300

NoSQL and Big Data Fernandez

www.odtug.com 5 ODTUG Kscope14

anomaly, refer to Toon Koppelaars’s article “CREATE ASSERTION: The Impossible Dream” in the August 2013 issue of

the NoCOUG Journal.

The False Premise of NoSQL
The final hurdle was extreme performance, and that’s where the Dynamo developers went astray. The Dynamo developers

believed that the relational model imposes a “join penalty” and therefore chose to store data as “blobs.” This objection to the

relational model is colorfully summarized by the following statement misattributed to Esther Dyson, the editor of the Release

1.0 newsletter, “Using tables to store objects is like driving your car home and then disassembling it to put it in the garage. It

can be assembled again in the morning, but one eventually asks whether this is the most efficient way to park a car.”
5
 The

statement dates back to 1988 and was much quoted when object-oriented databases were in vogue.

Since the shopping cart is an object, doesn’t disassembling it for storage make subsequent data retrieval and updates

inefficient? The belief stems from an unfounded assumption that has found its way into every mainstream DBMS—that

every table should map to physical storage. In reality, the relational model is a logical model and, therefore, it does not

concern itself with storage details at all. It would be perfectly legitimate to store the shopping cart in a physical form that

resembled a shopping cart while still offering a relational model of the data complete with SQL. In other words, the physical

representation could be optimized for the most important use case—retrieving the entire shopping-cart object using its key—

without affecting the relational model of the data. It would also be perfectly legitimate to provide a non-relational API for the

important use cases. Dr. Codd himself gave conditional blessing to such non-relational APIs in his 1985 Computerworld

article, “Is Your DBMS Really Relational?”, in which he says, “If a relational system has a low-level (single-record-at-a-

time) language, that low level [should not] be used to subvert or bypass the integrity rules and constraints expressed in the

higher level relational language (multiple-records-at-a-time).”

The key-blob or “key-value” approach used by Dynamo and successor products would be called “zeroth” normal form in

relational jargon. In his 1970 paper, Dr. Codd says:“Nonatomic values can be discussed within the relational framework.

Thus, some domains may have relations as elements. These relations may, in turn, be defined on nonsimple domains, and so

on. For example, one of the domains on which the relation employee is defined might be salary history. An element of the

salary history domain is a binary relation defined on the domain date and the domain salary. The salary history domain is

the set of all such binary relations. At any instant of time there are as many instances of the salary history relation in the data

bank as there are employees. In contrast, there is only one instance of the employee relation.” In common parlance, a

relation with non-simple domains is said to be in zeroth normal form or unnormalized. Dr. Codd suggested that unnormalized

relations should be normalized for ease of use. Here again is the unnormalized employee relation from Dr. Codd’s paper:

employee (

 employee#,

 name,

 birthdate,

 jobhistory (jobdate, title, salaryhistory (salarydate, salary)),

 children (childname, birthyear)

)

The above unnormalized relation can be decomposed into four normalized relations as follows.

employee' (employee#, name, birthdate)

jobhistory' (employee#, jobdate, title)

salaryhistory' (employee#, jobdate, salarydate, salary)

children' (employee#, childname, birthyear)

However, this is not to suggest that these normalized relations must necessarily be mapped to individual buckets of physical

storage. Dr. Codd differentiated between the stored set, the named set, and the expressible set. In the above example, we have

one unnormalized relation and four normalized relations, if we preferred it, the unnormalized employee relation could be the

only member of the stored set. Alternatively, if we preferred it, all five relations could be part of the stored set; that is, we

could legitimately store redundant representations of the data. However, the common belief blessed by current practice is that

the normalized relations should be the only members of the stored set.

5
 The statement cannot be found in the Release 1.0 archives at http://www.sbw.org/release1.0/. However, the following

statement appears in the September 1989 issue of Release 1.0: “You can keep a car in a file cabinet because you can file the

engine components in files in one drawer, and the axles and things in another, and keep a list of how everything fits together.

You can, but you wouldn’t want to.” (http://downloads.oreilly.com/radar/r1/09-89.pdf). Somewhere down the line, the

original text must have been paraphrased and the paraphrased text attributed to Esther Dyson instead of the original text.

Thanks to author Akmal Chaudhri for sending me the right source.

http://www.nocoug.org/Journal/NoCOUG_Journal_201308.pdf#page=13
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf#page=10
http://www.sbw.org/release1.0/
http://downloads.oreilly.com/radar/r1/09-89.pdf

NoSQL and Big Data Fernandez

www.odtug.com 6 ODTUG Kscope14

Even if the stored set contains only normalized relations, they need not map to different buckets of physical storage. Oracle is

unique among mainstream database management systems in providing a convenient construct called the “table cluster” that is

suitable for hierarchical schemas. In Dr. Codd’s example, employee# would be the cluster key, and rows corresponding to the

same cluster key from all four tables could be stored in the same physical block on disk thus avoiding the join penalty. If the

cluster was a “hash cluster,” no indexes would be required for the use case of retrieving records belonging to a single cluster

key.

The mistake made by the Dynamo developers is really a mistake perpetuated by the relational camp but it is a mistake

nevertheless.

Table Clusters in Oracle Database—Demonstration
Here’s a demonstration of using Oracle table clusters to store records from four tables in the same block and retrieving all the

components of the “employee cart” without using indexes. First we create four normalized tables and prove that all the

records of a single employee including job history, salary history, and children are stored in a single database block so that

there is never any join-penalty when assembling employee data. Then we create an object-relational view that assembles

employee information into a single unnormalized structure and show how to insert into this view using an “INSTEAD OF”

trigger.

The following demonstration was performed using Oracle Database is 11.2.0.2.

SQL*Plus: Release 11.2.0.2.0 Production on Sun Jul 28 19:44:23 2013

Copyright (c) 1982, 2010, Oracle. All rights reserved.

Connected to:

Oracle Database 11g Enterprise Edition Release 11.2.0.2.0 - Production

With the Partitioning, OLAP, Data Mining and Real Application Testing options

First, we create a table cluster and add four tables to the cluster.

SQL> CREATE CLUSTER employees (employee# INTEGER) hashkeys 1000;

Cluster created.

SQL> CREATE TABLE employees

 2 (

 3 employee# INTEGER NOT NULL,

 4 name VARCHAR2(16),

 5 birth_date DATE,

 6 CONSTRAINT employees_pk PRIMARY KEY (employee#)

 7)

 8 CLUSTER employees (employee#);

Table created.

SQL> CREATE TABLE job_history

 2 (

 3 employee# INTEGER NOT NULL,

 4 job_date DATE NOT NULL,

 5 title VARCHAR2(16),

 6 CONSTRAINT job_history_pk PRIMARY KEY (employee#, job_date),

 7 CONSTRAINT job_history_fk1 FOREIGN KEY (employee#) REFERENCES employees

 8)

 9 CLUSTER employees (employee#);

Table created.

SQL> CREATE TABLE salary_history

 2 (

 3 employee# INTEGER NOT NULL,

 4 job_date DATE NOT NULL,

 5 salary_date DATE NOT NULL,

 6 salary NUMBER,

 7 CONSTRAINT salary_history_pk PRIMARY KEY (employee#, job_date, salary_date),

 8 CONSTRAINT salary_history_fk1 FOREIGN KEY (employee#) REFERENCES employees,

 9 CONSTRAINT salary_history_fk2 FOREIGN KEY (employee#, job_date) REFERENCES job_history

 10)

 11 CLUSTER employees (employee#);

http://docs.oracle.com/pdf/A32534_1.pdf#page=151
http://docs.oracle.com/cd/E11882_01/appdev.112/e10766/tdddg_triggers.htm#BABECIAE
http://docs.oracle.com/pdf/A32534_1.pdf#page=151

NoSQL and Big Data Fernandez

www.odtug.com 7 ODTUG Kscope14

Table created.

SQL> CREATE TABLE children

 2 (

 3 employee# INTEGER NOT NULL,

 4 child_name VARCHAR2(16) NOT NULL,

 5 birth_date DATE,

 6 CONSTRAINT children_pk PRIMARY KEY (employee#, child_name),

 7 CONSTRAINT children_fk1 FOREIGN KEY (employee#) REFERENCES employees

 8)

 9 CLUSTER employees (employee#);

Table created.

Then we insert data into all four tables. We find that all the records have been stored in the same database block even though

they belong to different tables. Therefore the join-penalty has been eliminated.

SQL> INSERT INTO employees VALUES (1, 'IGNATIUS', '01-JAN-1970');

1 row created.

SQL> INSERT INTO children VALUES (1, 'INIGA', '01-JAN-2001');

1 row created.

SQL> INSERT INTO children VALUES (1, 'INIGO', '01-JAN-2002');

1 row created.

SQL> INSERT INTO job_history VALUES (1, '01-JAN-1991', 'PROGRAMMER');

1 row created.

SQL> INSERT INTO job_history VALUES (1, '01-JAN-1992', 'DATABASE ADMIN');

1 row created.

SQL> INSERT INTO salary_history VALUES (1, '01-JAN-1991', '1-FEB-1991', 1000);

1 row created.

SQL> INSERT INTO salary_history VALUES (1, '01-JAN-1991', '1-MAR-1991', 1000);

1 row created.

SQL> INSERT INTO salary_history VALUES (1, '01-JAN-1992', '1-FEB-1992', 2000);

1 row created.

SQL> INSERT INTO salary_history VALUES (1, '01-JAN-1992', '1-MAR-1992', 2000);

1 row created.

SQL> SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid) AS block_number FROM employees where

employee# = 1;

BLOCK_NUMBER

 22881

SQL> SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid) AS block_number FROM children where

employee# = 1;

BLOCK_NUMBER

 22881

SQL> SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid) AS block_number FROM job_history where

employee# = 1;

BLOCK_NUMBER

NoSQL and Big Data Fernandez

www.odtug.com 8 ODTUG Kscope14

 22881

SQL> SELECT DISTINCT DBMS_ROWID.ROWID_BLOCK_NUMBER(rowid) AS block_number FROM salary_history where

employee# = 1;

BLOCK_NUMBER

 22881

Next we create an object-relational view that presents each employee as an object.

SQL> CREATE OR REPLACE TYPE children_rec AS OBJECT (child_name VARCHAR2(16), birth_date DATE)

 2 /

Type created.

SQL> CREATE OR REPLACE TYPE children_tab AS TABLE OF children_rec

 2 /

Type created.

SQL> CREATE OR REPLACE TYPE salary_history_rec AS OBJECT (salary_date DATE, salary NUMBER)

 2 /

Type created.

SQL> CREATE OR REPLACE TYPE salary_history_tab AS TABLE OF salary_history_rec

 2 /

Type created.

SQL> CREATE OR REPLACE TYPE job_history_rec AS OBJECT (job_date DATE, title VARCHAR2(16),

salary_history SALARY_HISTORY_TAB)

 2 /

Type created.

SQL> CREATE OR REPLACE TYPE job_history_tab AS TABLE of job_history_rec

 2 /

Type created.

SQL> create or replace view employees_view as

 2 SELECT

 3 employee#,

 4 name,

 5 birth_date,

 6 CAST

 7 (

 8 MULTISET

 9 (

 10 SELECT

 11 child_name,

 12 birth_date

 13 FROM children

 14 WHERE employee#=e.employee#

 15)

 16 AS children_tab

 17) children,

 18 CAST

 19 (

 20 MULTISET

 21 (

 22 SELECT

 23 job_date,

 24 title,

 25 CAST

 26 (

 27 MULTISET

 28 (

 29 SELECT salary_date, salary

NoSQL and Big Data Fernandez

www.odtug.com 9 ODTUG Kscope14

 30 FROM salary_history

 31 WHERE employee#=e.employee#

 32 AND job_date=jh.job_date

 33)

 34 AS salary_history_tab

 35) salary_history

 36 FROM job_history jh

 37 WHERE employee#=e.employee#

 38)

 39 AS job_history_tab

 40) job_history

 41 FROM employees e;

View created.

Let’s retrieve one employee object and look at the query execution plan. No indexes are used in retrieving records from each

of the four tables. The cost of the plan is just 1. This is the minimum achievable cost, indicating that there is no join-penalty.

SQL> alter session set "_rowsource_execution_statistics"=true;

Session altered.

SQL> SELECT * FROM employees_view WHERE employee# = 1;

 1 IGNATIUS 01-JAN-70

CHILDREN_TAB(CHILDREN_REC('INIGA', '01-JAN-01'), CHILDREN_REC('INIGO', '01-JAN-02'))

JOB_HISTORY_TAB(JOB_HISTORY_REC('01-JAN-91', 'PROGRAMMER', SALARY_HISTORY_TAB(SALARY_HISTORY_REC('01-

FEB-91', 1000), SALARY_HISTORY_

REC('01-MAR-91', 1000))), JOB_HISTORY_REC('01-JAN-92', 'DATABASE ADMIN',

SALARY_HISTORY_TAB(SALARY_HISTORY_REC('01-FEB-92', 2000), S

ALARY_HISTORY_REC('01-MAR-92', 2000))))

SQL> SELECT * FROM TABLE(dbms_xplan.display_cursor(null, null, 'TYPICAL IOSTATS LAST'));

PLAN_TABLE_OUTPUT

SQL_ID aaxmaqz947aa0, child number 0

SELECT * FROM employees_view WHERE employee# = 1

Plan hash value: 2117652374

--

| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost | A-Rows | A-Time | Buffers |

--

| 0 | SELECT STATEMENT | | 1 | | | 1 | 1 |00:00:00.01 | 1 |

|* 1 | TABLE ACCESS HASH| CHILDREN | 1 | 1 | 32 | | 2 |00:00:00.01 | 1 |

|* 2 | TABLE ACCESS HASH| SALARY_HISTORY | 2 | 1 | 44 | | 4 |00:00:00.01 | 3 |

|* 3 | TABLE ACCESS HASH| JOB_HISTORY | 1 | 1 | 32 | | 2 |00:00:00.01 | 1 |

|* 4 | TABLE ACCESS HASH| EMPLOYEES | 1 | 845 | 27040 | | 1 |00:00:00.01 | 1 |

--

Predicate Information (identified by operation id):

 1 - access("EMPLOYEE#"=:B1)

 2 - access("EMPLOYEE#"=:B1)

 filter("JOB_DATE"=:B1)

 3 - access("EMPLOYEE#"=:B1)

 4 - access("EMPLOYEE#"=1)

Note

 - cpu costing is off (consider enabling it)

 - dynamic sampling used for this statement (level=2)

Next, let’s create an “INSTEAD OF” trigger so that we insert into the view directly; that is, use a single insert statement

instead of multiple insert statements. The trigger will do all the heavy-lifting for us.

SQL> CREATE OR REPLACE TRIGGER employees_view_insert

 2 INSTEAD OF INSERT ON employees_view

 3 REFERENCING NEW AS n

 4 FOR EACH ROW

 5 DECLARE

http://docs.oracle.com/cd/E11882_01/appdev.112/e10766/tdddg_triggers.htm#BABECIAE

NoSQL and Big Data Fernandez

www.odtug.com 10 ODTUG Kscope14

 6 i NUMBER;

 7 BEGIN

 8 INSERT INTO employees

 9 VALUES

 10 (

 11 :n.employee#,

 12 :n.name,

 13 :n.birth_date

 14);

 15

 16 FOR i IN :n.children.FIRST .. :n.children.LAST

 17 LOOP

 18 INSERT INTO children

 19 VALUES

 20 (

 21 :n.employee#,

 22 :n.children(i).child_name,

 23 :n.children(i).birth_date

 24);

 25 END LOOP;

 26

 27 FOR i IN :n.job_history.FIRST .. :n.job_history.LAST

 28 LOOP

 29 INSERT INTO job_history VALUES

 30 (

 31 :n.employee#,

 32 :n.job_history(i).job_date,

 33 :n.job_history(i).title

 34);

 35 FOR j IN :n.job_history(i).salary_history.FIRST .. :n.job_history(i).salary_history.LAST

 36 LOOP

 37 INSERT INTO salary_history

 38 VALUES

 39 (

 40 :n.employee#,

 41 :n.job_history(i).job_date,

 42 :n.job_history(i).salary_history(j).salary_date,

 43 :n.job_history(i).salary_history(j).salary

 44);

 45 END LOOP;

 46 END LOOP;

 47 END;

 48 /

Trigger created.

Finally, let’s insert an employee object directly into the view and confirm that we can read it back.

SQL> INSERT INTO employees_view

 2 VALUES

 3 (

 4 2,

 5 'YGNACIO',

 6 '01-JAN-70',

 7 CHILDREN_TAB

 8 (

 9 CHILDREN_REC('INIGA', '01-JAN-01'),

 10 CHILDREN_REC('INIGO', '01-JAN-02')

 11),

 12 JOB_HISTORY_TAB

 13 (

 14 JOB_HISTORY_REC

 15 (

 16 '01-JAN-91',

 17 'PROGRAMMER',

 18 SALARY_HISTORY_TAB

 19 (

 20 SALARY_HISTORY_REC('01-FEB-91', 1000),

 21 SALARY_HISTORY_REC('01-MAR-91', 1000)

 22)

 23),

 24 JOB_HISTORY_REC

NoSQL and Big Data Fernandez

www.odtug.com 11 ODTUG Kscope14

 25 (

 26 '01-JAN-92',

 27 'DATABASE ADMIN',

 28 SALARY_HISTORY_TAB

 29 (

 30 SALARY_HISTORY_REC('01-FEB-92', 2000),

 31 SALARY_HISTORY_REC('01-MAR-92', 2000)

 32)

 33)

 34)

 35);

1 row created.

SQL> SELECT * FROM employees_view WHERE employee# = 2;

 2 YGNACIO 01-JAN-70

CHILDREN_TAB(CHILDREN_REC('INIGA', '01-JAN-01'), CHILDREN_REC('INIGO', '01-JAN-02'))

JOB_HISTORY_TAB(JOB_HISTORY_REC('01-JAN-91', 'PROGRAMMER', SALARY_HISTORY_TAB(SALARY_HISTORY_REC('01-

FEB-91', 1000), SALARY_HISTORY_

REC('01-MAR-91', 1000))), JOB_HISTORY_REC('01-JAN-92', 'DATABASE ADMIN',

SALARY_HISTORY_TAB(SALARY_HISTORY_REC('01-FEB-92', 2000), S

ALARY_HISTORY_REC('01-MAR-92', 2000))))

Schemaless Design
As we said at the outset, NoSQL consists of “disruptive innovations” that are gaining steam and moving upmarket. So far, we

have discussed functional segmentation (the pivotal innovation), sharding, asynchronous replication, eventual consistency

(resulting from lack of distributed transactions across functional segments and from asynchronous replication), and blobs.

The final innovation of the NoSQL camp is “schemaless design.” In database management systems of the NoSQL kind, data

is stored in “blobs” and documents the database management system does not police their structure. In mainstream database

management systems on the other hand, doctrinal purity requires that the schema be designed before data is inserted. Let’s do

a thought experiment.

Suppose that we don’t have a schema and let’s suppose that the following facts are known.

 Iggy Fernandez is an employee with EMPLOYEE_ID=1 and SALARY=$1000.

 Mogens Norgaard is a commissioned employee with EMPLOYEE_ID=2, SALARY=€1000, and

COMMISSION_PCT=25.

 Morten Egan is a commissioned employee with EMPLOYEE_ID=3, SALARY=€1000, and unknown

COMMISSION_PCT.

Could we ask the following questions and expect to receive correct answers?

 Question: What is the salary of Iggy Fernandez?

Expected answer: $1000.

 Question: What is the commission percentage of Iggy Fernandez?

Expected answer: Invalid question.

 Question: What is the commission percentage of Mogens Norgaard?

Expected answer: 25%

 Question: What is the commission percentage of Morten Egan?

Expected answer: Unknown.

If we humans can process the above data and correctly answer the above questions, then surely we can program computers to

do so.

The above data could be modeled with the following three relations. It is certainly disruptive to suggest that this be done on

the fly by the database management system but not outside the realm of possibility.

EMPLOYEES

 EMPLOYEE_ID NOT NULL NUMBER(6)

NoSQL and Big Data Fernandez

www.odtug.com 12 ODTUG Kscope14

 EMPLOYEE_NAME VARCHAR2(128)

UNCOMMISSIONED_EMPLOYEES

 EMPLOYEE_ID NOT NULL NUMBER(6)

 SALARY NUMBER(8,2)

COMMISSIONED_EMPLOYEES

 EMPLOYEE_ID NOT NULL NUMBER(6)

 SALARY NUMBER(8,2)

 COMMISSION_PCT NUMBER(2,2)

A NoSQL company called Hadapt has already stepped forward with such a feature:

“While it is true that SQL requires a schema, it is entirely untrue that the user has to define this schema in advance

before query processing. There are many data sets out there, including JSON, XML, and generic key-value data sets

that are self-describing — each value is associated with some key that describes what entity attribute this value is

associated with [emphasis added]. If these data sets are stored in Hadoop, there is no reason why Hadoop cannot

automatically generate a virtual schema against which SQL queries can be issued. And if this is true, users should not be

forced to define a schema before using a SQL-on-Hadoop solution — they should be able to effortlessly issue SQL

against a schema that was automatically generated for them when data was loaded into Hadoop.

Thanks to the hard work of many people at Hadapt from several different groups, including the science team who

developed an initial design of the feature, the engineering team who continued to refine the design and integrate it into

Hadapt’s SQL-on-Hadoop solution, and the customer solutions team who worked with early customers to test and collect

feedback on the functionality of this feature, this feature is now available in Hadapt.”

(http://hadapt.com/blog/2013/10/28/all-sql-on-hadoop-solutions-are-missing-the-point-of-hadoop/)

This is not really new ground. Oracle Database provides the ability to convert XML documents into relational tables

(http://docs.oracle.com/cd/E11882_01/appdev.112/e23094/xdb01int.htm#ADXDB0120) though it ought to be possible to

view XML data as tables while physically storing it in XML format in order to benefit certain use cases. It should also be

possible to redundantly store data in both XML and relational formats in order to benefit other use cases.

In “Extending the Database Relational Model to Capture More Meaning,” Dr. Codd explains how a “formatted database” is

created from a collection of facts:

“Suppose we think of a database initially as a set of formulas in first-order predicate logic. Further, each formula has

no free variables and is in as atomic a form as possible (e.g, A & B would be replaced by the component formulas A, B).

Now suppose that most of the formulas are simple assertions of the form Pab…z (where P is a predicate and a, b, … , z

are constants), and that the number of distinct predicates in the database is few compared with the number of simple

assertions. Such a database is usually called formatted, because the major part of it lends itself to rather regular

structuring. One obvious way is to factor out the predicate common to a set of simple assertions and then treat the set as

an instance of an n-ary relation and the predicate as the name of the relation.”

In other words, a collection of facts can always be organized into relations if necessary.

Oracle NoSQL Database
In May 2011, Oracle Corporation published a scathing indictment of NoSQL, the last words being “Go for the tried and true

path. Don’t be risking your data on NoSQL databases.” Just a few months later however, in September of that year, Oracle

Corporation released Oracle NoSQL Database. Oracle removed the NoSQL criticism from its website but since information

published on the internet is immortal, archived copies can be easily found if you know what you are looking for. In the white

paper that accompanied the release of Oracle NoSQL Database, Oracle Corporation claimed that the demands of certain

applications could not be met by mainstream database management systems:

“The Oracle NoSQL Database, with its “No Single Point of Failure” architecture, is the right solution when data access

is “simple” in nature and application demands exceed the volume or latency capability of traditional data management

solutions. For example, click-stream data from high volume web sites, high-throughput event processing and social

networking communications all represent application domains that produce extraordinary volumes of simple keyed data.

Monitoring online retail behavior, accessing customer profiles, pulling up appropriate customer ads and storing and

forwarding real-time communication are examples of domains requiring the ultimate in low-latency access. Highly

distributed applications such as real-time sensor aggregation and scalable authentication also represent domains well-

suited to Oracle NoSQL Database.”

http://hadapt.com/news/schemaless-sql-enabling-analysts-to-easily-question-all-data-types-through-one-familiar-interface/
http://hadapt.com/blog/2013/10/28/all-sql-on-hadoop-solutions-are-missing-the-point-of-hadoop/
http://docs.oracle.com/cd/E11882_01/appdev.112/e23094/xdb01int.htm#ADXDB0120
https://www.google.com/#q=%2B%22Debunking+the+NoSQL+Hype%22
https://www.google.com/#q=%2B%22Debunking+the+NoSQL+Hype%22
http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosql-wp-1436762.pdf
http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosql-wp-1436762.pdf

NoSQL and Big Data Fernandez

www.odtug.com 13 ODTUG Kscope14

Oracle NoSQL Database has two features that distinguish it from other key-value stores:

 A key is the concatenation of a “major key path” and a “minor key path.” All records with the same “major key

path” will be colocated on the same storage node.

 Transactional support is provided for modifying multiple records with the same major key path.

Here are some resources to get you started with Oracle NoSQL Database:

 The white paper on Oracle NoSQL Database v2.0; an updated version of the original September 2011 paper.

 Oracle NoSQL Database: Real-Time Big Data Management for the Enterprise by Maqsood Alam, Aalok Muley,

Chaitanya Kadaru and Ashok Joshi (Oracle Press, 2013)

 The community edition of Oracle NoSQL Database v2.0 which can be downloaded from

http://download.oracle.com/otn-pub/otn_software/nosql-database/kv-ce-2.0.26.zip. The prerequisite is JDK 1.6 or higher

which you can download fromhttp://www.oracle.com/technetwork/java/javase/downloads/index.html.

 Installation instructions and a five-minute quickstart for Oracle NoSQL Database are at

http://docs.oracle.com/cd/NOSQL/html/quickstart.html. It includes a “Hello World” teaching example illustrating the

“put” and “get” function calls which are the basic operations in key-value stores.

final String keyString = "Hello";

final String valueString = "Big Data World!";

store.put(Key.createKey(keyString), Value.createValue(valueString.getBytes()));

final ValueVersion valueVersion = store.get(Key.createKey(keyString));

System.out.println(keyString + " " + new String(valueVersion.getValue().getValue()));

 Oracle NoSQL Database and Oracle Relational Database – A Perfect Fit, a presentation by Dave Rubin, Director of

NoSQL Database development at Oracle Corporation.

 Data Management in Oracle NoSQL Database, a presentation by Anuj Sahni, Principal Product Manager at Oracle

Corporation. Also a hands-on database administration workshop.

 The Oracle NoSQL Database resource page on the Oracle Corporation website.

NoSQL Taxonomy
NoSQL databases can be classified into the following categories:

 Key-value stores: The archetype is Amazon Dynamo of which DynamoDB is the commercial successor. Key-value

stores basically allow applications to “put” and “get” values but each product has differentiators. For example,

DynamoDB supports “tables” (namespaces) while Oracle NoSQL Database offers “major” and “minor” key paths.

 Document stores: While key-value stores treat values as uninterpreted strings, document stores allow values to

be managed using formats such as JSON (JavaScript Object Notation) which are conceptually similar to XML. This

allows key-value pairs to be indexed by any component of the value just as XML data can be indexed in mainstream

database management systems.

 Column-family stores: Column-family stores allow data associated with a single key to be spread over multiple storage

nodes. Each storage node only stores a subset of the data associated with the key; hence the name “column-family.” A

key is therefore composed of a “row key” and a “column key.”

 Graph databases: Graph databases are non-relational databases that use graph concepts such as nodes and edges to

solve certain classes of problems: for example; the shortest route between two towns on a map. The concepts of

functional segmentation, sharding, replication, eventual consistency, and schemaless design do not apply to graph

databases so I will not discuss graph databases.

NoSQL products are numerous and rapidly evolving. There is a crying need for a continuously updated encyclopedia of

NoSQL products but none exists. There is a crying need for an independent benchmarking organization but none exists. My

best advice is to do a proof of concept (POC) as well as a PSR (Performance, Scalability, and Reliability) test before

committing to using a NoSQL product. Back in the day—in 1985 to be precise—Dr. Codd had words of advice for those who

were debating between the new relational products and the established pre-relational products of his day. The advice is as

solid today as it was in Dr. Codd’s day.

“Any buyer confronted with the decision of which DBMS to acquire should weigh three factors heavily.

http://www.oracle.com/technetwork/products/nosqldb/learnmore/nosql-wp-1436762.pdf
http://www.amazon.com/Oracle-NoSQL-Database-Management-Enterprise/dp/0071816534/
http://download.oracle.com/otn-pub/otn_software/nosql-database/kv-ce-2.0.26.zip
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://docs.oracle.com/cd/NOSQL/html/quickstart.html
http://iggyfernandez.wordpress.com/2013/12/29/the-twelve-days-of-nosql-day-five-replication-and-eventual-consistency/
http://www.nocoug.org/download/2013-02/NoCOUG_201302_Anju_Sahni_Oracle_NoSQL_Database.pdf
http://www.nocoug.org/download/2013-02/NoCOUG_201302_Anuj_Sahni_Demonstration.pdf
http://www.oracle.com/us/products/database/nosql/overview/index.html
http://docs.aws.amazon.com/amazondynamodb/latest/developerguide/DataModel.html
http://www.json.org/

NoSQL and Big Data Fernandez

www.odtug.com 14 ODTUG Kscope14

The first factor is the buyer’s performance requirements, often expressed in terms of the number of transactions that

must be executed per second. The average complexity of each transaction is also an important consideration. Only if the

performance requirements are extremely severe should buyers rule out present relational DBMS products on this basis.

Even then buyers should design performance tests of their own, rather than rely on vendor-designed tests or vendor-

declared strategies. [emphasis added]

The second factor is reduced costs for developing new databases and new application programs …

The third factor is protecting future investments in application programs by acquiring a DBMS with a solid theoretical

foundation …

In every case, a relational DBMS wins on factors two and three. In many cases, it can win on factor one also—in spite of

all the myths about performance.”

—An Evaluation Scheme for Database Management Systems that are claimed to be Relational

Big Data in a Nutshell
The topic of Big Data is often brought up in NoSQL discussions so let’s give it a nod. In 1998, Sergey Brin and Larry Page

invented the PageRank algorithm for ranking web pages (The Anatomy of a Large-Scale Hypertextual Web Search Engine by

Brin and Page) and founded Google. The PageRank algorithm required very large matrix-vector multiplications (Mining of

Massive Datasets Ch. 5 by Rajaraman and Ullman) so the MapReduce technique was invented to handle such large

computations (MapReduce: Simplified Data Processing on Large Clusters). Smart people then realized that the MapReduce

technique could be used for other classes of problems and an open-source project called Hadoop was created to popularize

the MapReduce technique (The history of Hadoop: From 4 nodes to the future of data). Other smart people realized that

MapReduce could handle the operations of relational algebra such as join, anti-join, semi-join, union, difference, and

intersection (Mining of Massive Datasets Ch. 2 by Rajaraman and Ullman) and began looking at the possibility of processing

large volumes of business data (a.k.a. “Big Data”) better and cheaper than mainstream database management systems.

Initially programmers had to write Java code for the “mappers” and “reducers” used by MapReduce. However, smart people

soon realized that SQL queries could be automatically translated into the necessary Java code and “SQL-on-Hadoop” was

born. Big Data thus became about processing large volumes of business data with SQL but better and cheaper than

mainstream database management systems. However, the smart people have now realized that MapReduce is not the best

solution for low-latency queries (Facebook open sources its SQL-on-Hadoop engine, and the web rejoices). Big Data has

finally become about processing large volumes of business data with SQL but better and cheaper than mainstream database

management systems and with or without MapReduce.

That’s the fast-moving story of Big Data in a nutshell.

Mistakes of the Relational Camp
Over a lifespan of four and a half decades, the relational camp made a series of strategic mistakes that made NoSQL possible.

The mistakes started very early. The biggest mistake is enshrined in the first sentence of the first paper on relational theory by

none other than its inventor, Dr. Edgar Codd: “Future users of large data banks must be protected from having to know how

the data is organized in the machine (the internal representation).” (A Relational Model of Data for Large Shared Data

Banks)

How likely is it that application developers will develop scalable high-performance applications if they are shielded from the

internal representation of data? SQL was never intended for serious application development. As explained by the creators of

SQL in their 1974 paper, there is “a large class of users who, while they are not computer specialists, would be willing to

learn to interact with a computer in a reasonably high-level, non-procedural query language. Examples of such users are

accountants, engineers, architects, and urban planners [emphasis added]. It is for this class of users that SEQUEL is

intended. For this reason, [SQL] emphasizes simple data structures and operations [emphasis added].”

(http://faculty.cs.tamu.edu/yurttas/PL/DBL/docs/sequel-1974.pdf).

A case in point: If you were the manager of a bookstore, how would you stock the shelves? Would you stand at the door and

fling books onto any shelf that had some free space, perhaps recording their locations in a notebook for future reference. Of

course not! And would you scatter related books all over the bookstore? Of course not! Then why do we store rows of data in

random fashion? The default Oracle table storage structure is the unorganized heap and yet it is chosen 99.9% of the time.

http://ilpubs.stanford.edu:8090/361/1/1998-8.pdf
http://infolab.stanford.edu/~ullman/mmds/ch5.pdf
http://infolab.stanford.edu/~ullman/mmds/ch5.pdf
http://static.googleusercontent.com/media/research.google.com/en/us/archive/mapreduce-osdi04.pdf
http://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-nodes-to-the-future-of-data/
http://infolab.stanford.edu/~ullman/mmds/ch2.pdf
http://gigaom.com/2013/11/06/facebook-open-sources-its-sql-on-hadoop-engine-and-the-web-rejoices/
http://faculty.cs.tamu.edu/yurttas/PL/DBL/docs/sequel-1974.pdf

NoSQL and Big Data Fernandez

www.odtug.com 15 ODTUG Kscope14

Productivity and ease-of-use were the goals of the relational model, not performance. In Normalized Data Base Structure: A

Brief Tutorial (1971), Dr. Codd said “What is less understandable is the trend toward more and more complexity in the data

structures with which application programmers and terminal users directly interact. Surely, in the choice of logical data

structures that a system is to support, there is one consideration of absolutely paramount importance – and that is the

convenience of the majority of users. … To make formatted data bases readily accessible to users (especially casual users)

who have little or no training in programming we must provide the simplest possible data structures and almost natural

language. … What could be a simpler, more universally needed, and more universally understood data structure than a

table?”

Dr. Codd emphasized the productivity benefits of the relational model in his acceptance speech for the 1981 Turing

Award: “It is well known that the growth in demands from end users for new applications is outstripping the capability of

data processing departments to implement the corresponding application programs. There are two complementary

approaches to attacking this problem (and both approaches are needed): one is to put end users into direct touch with the

information stored in computers; the other is to increase the productivity of data processing professionals in the development

of application programs. It is less well known that a single technology, relational database management, provides a practical

foundation to both approaches.”

The emphasis on productivity and ease of use at the expense of performance was the biggest mistake of the relational camp.

Mistake #2: Forbidding nested relations
Dr. Codd made a second serious mistake in his 1970 paper by forbidding nested relations in the interests of productivity and

ease-of-use. He incorrectly argued (in an unpublished version of that paper) that nested relations would mean that “The

second-order predicate calculus (rather than first-order) is needed because the domains on which relations are defined may

themselves have relations as elements.” Not anticipating markup languages like XML, he also argued that “The simplicity of

the array representation which becomes feasible when all relations are cast in normal form is not only an advantage for

storage purposes but also for communication of bulk data between systems which use widely different representations of the

data.” This caused the detractors of the relational model to observe that “Using tables to store objects is like driving your car

home and then disassembling it to put it in the garage. It can be assembled again in the morning, but one eventually asks

whether this is the most efficient way to park a car.” (incorrectly attributed to Esther Dyson, the editor of Release 1.0).

Even though he made a serious mistake by forbidding nested relations, Dr. Codd never said that

 data should be stored in normalized form only;

 each stored table should occupy a separate storage bucket;

 a single data block should only contain data from a single table;

 data should be stored in row-major order; and

 stored tables have only one storage representation each.

Oracle Database has limited support for nested tables but they are not stored inline, they are “collections” not real tables, and

you cannot define primary-key or foreign-key constraints on them.

Mistake #3: Favoring relational calculus over relational algebra
At the heart of the relational model are the operations of the “relational algebra”: equi-join, theta-join, outer-join, semi-join,

anti-join, union, difference, intersection, etc. In the interests of productivity and ease-of-use however, Dr. Codd favored

“relational calculus” over relational algebra. In Relational Completeness of Data Base Sublanguages, he proved the

equivalence of relational calculus and relational algebra. In the interests of productivity and ease-of-use, Codd then made the

decision for you and me: “Clearly, the majority of users should not have to learn either the relational calculus or algebra in

order to interact with data bases. However, requesting data by its properties is far more natural than devising a particular

algorithm or sequence of operations for its retrieval. Thus, a calculus-oriented language provides a good target language for

a more user-oriented source language.” SQL was therefore based on relational calculus instead of relational algebra and it

became the job of the database management system to convert SQL statements into equivalent sequences of relational algebra

operations. This is not a trivial problem. It is an extremely hard problem. (See Appendix B—The way you write your query

matters.)

Mistake #4: Equating the normalized set with the stored set
Equating the normalized set with the stored set ensures that mainstream database management systems will be permanently

handicapped in the performance race. For example, a nested relation can be normalized into “first normal form” (no nested

http://docs.oracle.com/cd/B28359_01/server.111/b28318/schema.htm#CNCPT1137

NoSQL and Big Data Fernandez

www.odtug.com 16 ODTUG Kscope14

relations). As another example, if B and C are colunm-subsets of A and A = B EQUIJOIN C, then we can perform a “lossless

decomposition” of A into B and C. However, the relational model does not require that each normalized relation be mapped

to a separate bucket of physical storage. Dr. Codd differentiated between the “stored” set, the “named” set, and the

“expressible” set but mainstream database management systems conflate the stored set with the normalized set. Mainstream

database management systems only allow integrity constraints to be specified on the stored set and only permit DML

operations on the stored set. If B and C are column-subsets of A and A = B EQUIJOIN C, then it ought to be possible to store

A only while defining primary and foreign key constraints on B and C and allowing DML operations on B and C but this is

not permitted by mainstream database management systems.

Mistake #5: Incomplete implementation
Strange as it may sound, the relational model has not yet been fully implemented by mainstream database management

systems. You’ve probably heard of Codd’s “twelve rules” published in a 1985 Computerworld article. More than a quarter-

century later, mainstream database management systems still do not follow all the twelve rules. DML operations are still not

permitted on views (Rule 6 and Rule 7). Arbitrary integrity constraints still cannot be declared and enforced (Rule 10).

Integrity constraints still cannot span separate databases (Rule 11). If would be hard to abandon a database management

systems that had these capabilities. It is easier to abandon a database management system that does not have these

capabilities.

Mistake #6: The marriage of relational and transactional
ACID transactions nothing to do with the relational model per se although relational theory does come in very handy in

defining consistency constraints. (See Appendix A—See What’s so sacred about relational anyway?) Pre-relational database

management systems such as IMS provided ACID guarantees and so did post-relational object-oriented database

management systems. We should be able to store non-transactional data outside a transactional database management system

while continuing to exploit the entire spectrum of indexing, partitioning, and clustering techniques. (See Appendix C—We

don’t use databases; we don’t use indexes.)

Concluding Remarks
The relational camp put productivity, ease-of-use, and logical elegance front and center. However, the mistakes and

misconceptions of the relational camp prevent mainstream database management systems from achieving the performance

levels required by modern applications. For example, Dr. Codd forbade nested relations (a.k.a. unnormalized relations) and

mainstream database management systems equate the normalized set with the stored set.

The NoSQL camp on the other hand put performance, scalability, and reliability front and center. Understandably the NoSQL

camp could not see past the mistakes and misconceptions of the relational camp and lost the opportunity to take the relational

model to the next level. Just like the relational camp, the NoSQL camp believes that normalization dictates physical storage

choices. Just like the relational camp, the NoSQL camp believes that non-relational APIs are forbidden by the relational

model. And the NoSQL camp believes that relational is synonymous with ACID (Atomicity, Consistency, Isolation,

Durability).

The NoSQL camp created a number of innovations that are disruptive in the sense used by Harvard Business School

professor Clayton Christensen: functional segmentation, sharding, replication, eventual consistency, and schemaless design.

Since these innovations are compatible with the relational model, I hope that they will eventually be absorbed by mainstream

database management systems.

There are already proofs that performance, scalability, and reliability can be achieved without abandoning the relational

model. For example, ScaleBase provides sharding and replication on top of MySQL storage nodes. Another good example to

study is VoltDB which claims to be the world’s fastest OLTP database (though it has never published an audited TPC-C

benchmark). A counter-example to Amazon is eBay which arguably has equal scale and equally high performance,

scalability, and reliability requirements. eBay uses performance segmentation, sharding, replication, and eventual consistency

but continues to use Oracle (and SQL) to manage the local database. I asked Randy Shoup, one of the architects of the eBay

e-commerce platform, why eBay did not abandon Oracle Database and he answered in one word: “comfort.” Here are links

to some of his presentations and articles on the eBay architecture:

 eBay’s Scaling Odyssey: Growing and Evolving a Large eCommerce Site (Slide deck)

 The eBay Architecture: Striking a balance between site stability, feature velocity, performance, and cost (Slide deck)

 Randy Shoup Discusses the eBay Architecture (video and transcript)

http://www.scalebase.com/products/product-architecture/
http://voltdb.com/products/technology
http://www.cs.cornell.edu/projects/ladis2008/materials/eBayScalingOdyssey%20ShoupTravostino.pdf
http://www.addsimplicity.com/downloads/eBaySDForum2006-11-29.pdf
http://www.infoq.com/interviews/shoup-ebay-architecture

NoSQL and Big Data Fernandez

www.odtug.com 17 ODTUG Kscope14

 Randy Shoup on eBay’s Architectural Principles (video and transcript)

 Scalability Best Practices: Lessons from eBay (blog post)

Finally, I should point out that are very good reasons to criticize current NoSQL products; for example, lack of standards,

primitive feature sets, primitive security, and primitive management tools, unproven claims, and traps for the unwary.

MongoDB uses a database-wide lock for reads and writes …

Appendix A—What’s so sacred about relational anyway?
Dr. Codd personally believed that the chief advantage of the relational model was its simplicity and consequent appeal to

users (especially casual users) who have little or no training in programming. He singles out this advantage in the opening

sentence of his very first paper on relational theory, A Relational Model of Data for Large Shared Data Banks, faithfully

reproduced in the 100
th

 issue of the NoCOUG Journal (down to the misspelling of the city name Phoenix in the References

section): “Future users of large data banks must be protected from having to know how the data is organized in the machine

(the internal representation).” He makes the point very forcefully in a subsequent paper, Normalized Data Base Structure: A

Brief Tutorial: “In the choice of logical data structures that a system is to support, there is one consideration of absolutely

paramount importance—and that is the convenience of the majority of users. … To make formatted data bases readily

accessible to users (especially casual users) who have little or no training in programming we must provide the simplest

possible data structures and almost natural language. … What could be a simpler, more universally needed, and more

universally understood data structure than a table? Why not permit such users to view all the data in a data base in a tabular

way?”

But does the appeal to users (especially casual users) who have little or no training in programming make relational sacred to

computer professionals? Should computer professionals like you and me be protected from having to know how the data is

organized in the machine? Will we develop high-performance applications if we are ignorant about those little details? If

your answers are in the negative, then read on.

Computational Elegance
Dividing 3704 by 14 is computationally more elegant than dividing MMMDCCIV by XIV (Roman notation), wouldn’t you

agree? (Here’s how the Romans did division). The computational elegance of the relational model is unquestionable. The co-

inventor of the SQL Language, Donald Chamberlin, reminisces: “Codd gave a seminar and a lot of us went to listen to him.

This was as I say a revelation for me because Codd had a bunch of queries that were fairly complicated queries and since I’d

been studying CODASYL, I could imagine how those queries would have been represented in CODASYL by programs that

were five pages long that would navigate through this labyrinth of pointers and stuff. Codd would sort of write them down as

one-liners. These would be queries like, “Find the employees who earn more than their managers.” He just whacked them

out and you could sort of read them, and they weren’t complicated at all, and I said, “Wow.” This was kind of a conversion

experience for me, that I understood what the relational thing was about after that.” (The 1995 SQL Reunion: People,

Projects, and Politics)

But is computational elegance the holy grail of computer professionals? Is it the be-all and end-all of application software

development? If your answers are in the negative, then read on.

Derivability, Redundancy, and Consistency of Relations
The true importance of relational theory is highlighted by the title of the original (and shorter) version of Codd’s first paper.

That version predated the published version by a year, and the title was “Derivability, Redundancy, and Consistency of

Relations Stored in Large Data Banks.” The title of this unpublished version emphasizes that the real importance of

relational theory is that it provides a rigorous method of asserting arbitrarily complex consistency constraints that must be

satisfied by the data within the database. For example, the following assertion written in Structured Query Language (SQL)

states that the company must have at least 50 employees:

CREATE ASSERTION employees_a1 AS CHECK (

 (SELECT COUNT(*) FROM employees) >= 50

)

In practice, the above consistency check would have to be implemented using a database trigger, since relational vendors do

not support the CREATE ASSERTION feature of SQL-92.

As another example, the following “referential integrity constraint” links the Employees table to the Departments table:

CREATE ASSERTION emp_dept_fk AS CHECK (

 NOT EXISTS (

http://www.infoq.com/presentations/shoup-ebay-architectural-principles
http://www.infoq.com/articles/ebay-scalability-best-practices
http://docs.mongodb.org/manual/faq/concurrency/#what-type-of-locking-does-mongodb-use
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf
http://turner.faculty.swau.edu/mathematics/materialslibrary/roman/
http://www.mcjones.org/System_R/SQL_Reunion_95/SRC-1997-018.pdf#page=10
http://www.mcjones.org/System_R/SQL_Reunion_95/SRC-1997-018.pdf#page=10
http://www.liberidu.com/blog/images/rj599.pdf
http://www.liberidu.com/blog/images/rj599.pdf

NoSQL and Big Data Fernandez

www.odtug.com 18 ODTUG Kscope14

 SELECT * FROM employees e WHERE NOT EXISTS (

 SELECT * FROM departments d WHERE d.department_id = e.department_id

)

)

)

In practice, referential integrity constraints are implemented using simplified syntax that obfuscates the theoretical

underpinnings. The database administrator or application developer need simply say:

ALTER TABLE employees ADD CONSTRAINT emp_dept_fk

FOREIGN KEY ("DEPARTMENT_ID") REFERENCES departments;

Strange as it may sound, Oracle Database did not enforce referential integrity constraints until Version 7 was released in the

1990s (by which time Oracle Corporation was already the world’s largest database company). From the January 1989 issue

of Software Magazine:

“About six or seven years ago when I worked for a vendor that made a Codasyl DBMS called Seed, I spoke at a

conference. Also speaking was Larry Rowe, one of the founders of Relational Technology, Inc. and one of the developers

of the relational DBMS Ingres. We were about to be clobbered by these new relational systems. He suggested to me that

the best way to compete against the relational systems was to point out that they did not support referential integrity.

Well, back then, virtually no one understood the problem enough to make it an issue. Today, Codasyl DBMSs are an

endangered species, and referential integrity is a hot topic used by the relational DBMSs to compete among

themselves.”

To summarize, the relational model is sacred because it gives application software developers the ability to assert and enforce

consistency of data in databases.

Appendix B—The way you write your query matters
In 1988, a SQL researcher named Fabian Pascal wrote an article for Database Programming and Design in which he quoted

Chris Date as saying:

“SQL is an extremely redundant language. By this I mean that all but the most trivial of problems can be expressed in

SQL in a variety of different ways. Of course, the differences would not be important if all formulations worked equally

well but that is unlikely. As a result, users are forced to spend time and effort trying to find the “best” formulation (that

is, the version that performs best)—which is exactly one of the things the relational model was trying to avoid in the first

place.”

Pascal then went on to test seven equivalent queries with five different database engines. Only one out of the five database

engines came anywhere near to acing the test; it used the same execution plan for six of the queries but did not support the

seventh formulation. The other engines used a range of query plans with different execution times. Pascal then predicted that:

“Eventually, all SQL DBMSs, for competitive reasons, will have to equalize the performance of redundant SQL

expressions and to document their execution plans. Forcing users to maximize performance through query formulation is

not only unproductive, but simply a lost cause, especially if there is no guidance from the system. The more users

understand the relational model and its productivity intentions, the more they will demand equalized performance and

documented execution plans from vendors, instead of doggedly attempting to undertake unnecessary and futile burdens.”

Let’s find out if Pascal’s twenty-five year old prediction of equalized performance came true. First, let’s create tables similar

to those that Pascal used. The tests require a table called Personnel containing employee details and a table called Payroll

containing salary payments. The employee ID is the primary key of each table (meaning that they are also indexed using the

employee ID) and the payroll table is indexed using salary. The problem is to find out which one of the 9900 employees

received a payment of $199,170. I conducted my tests using Oracle Database 11g Release 2.

CREATE TABLE personnel

(

 empid CHAR(9),

 lname CHAR(15),

 fname CHAR(12),

 address CHAR(20),

 city CHAR(20),

 state CHAR(2),

 ZIP CHAR(5)

);

CREATE TABLE payroll

http://www.highbeam.com/doc/1G1-7328281.html
http://www.highbeam.com/doc/1G1-7328281.html

NoSQL and Big Data Fernandez

www.odtug.com 19 ODTUG Kscope14

(

 empid CHAR(9),

 bonus INTEGER,

 salary INTEGER

);

INSERT INTO personnel

SELECT

 TO_CHAR(LEVEL, '09999') AS empid,

 DBMS_RANDOM.STRING('U', 15) AS lname,

 DBMS_RANDOM.STRING('U', 12) AS fname,

 '500 ORACLE PARKWAY' AS address,

 'REDWOOD SHORES' AS city,

 'CA' AS state,

 '94065' AS zip

FROM

 dual

CONNECT BY LEVEL <= 9900;

INSERT INTO payroll(empid, bonus, salary)

SELECT

 per.empid,

 0 as bonus,

 99170 + ROUND(DBMS_RANDOM.VALUE * 100000, -2) AS salary

FROM

 personnel per;

CREATE UNIQUE INDEX personnel_u1 ON personnel(empid);

CREATE UNIQUE INDEX payroll_u1 ON payroll(empid);

CREATE INDEX payroll_i1 ON payroll(salary);

EXEC DBMS_STATS.GATHER_TABLE_STATS(ownname=>'HR', tabname=>'PERSONNEL');

EXEC DBMS_STATS.GATHER_TABLE_STATS(ownname=>'HR', tabname=>'PAYROLL');

Observe that I gathered optimizer statistics for both tables although they are not strictly necessary for the tests that follow; a

query optimizer can generate query plans even in the absence of statistics.

Relational algebra method
The first formulation uses the relational algebra method. The query optimizer drives from the payroll table to the personnel

table, a good move.

SELECT DISTINCT per.empid, per.lname

FROM personnel per JOIN payroll pay ON (per.empid = pay.empid)

WHERE pay.salary = 199170;

EMPID LNAME

--------- ---------------

 01836 KULGDTAFIIYUDIE

 04535 ZZNDFPAGHWQAVSV

 07751 EFBDSEXSBJUQJIF

 06679 CCAZNDOPKSKEQRS

SQL_ID cx451qsx2qfcv, child number 0

SELECT DISTINCT per.empid, per.lname FROM personnel per JOIN payroll

pay ON (per.empid = pay.empid) WHERE pay.salary = 199170

Plan hash value: 3901981856

| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | 1 | | | 21 (100)| | 4 |00:00:00.01 | 16 |

| 1 | HASH UNIQUE | | 1 | 10 | 410 | 21 (5)| 00:00:01 | 4 |00:00:00.01 | 16 |

| 2 | NESTED LOOPS | | 1 | | | | | 4 |00:00:00.01 | 16 |

| 3 | NESTED LOOPS | | 1 | 10 | 410 | 20 (0)| 00:00:01 | 4 |00:00:00.01 | 12 |

| 4 | TABLE ACCESS BY INDEX ROWID| PAYROLL | 1 | 10 | 150 | 10 (0)| 00:00:01 | 4 |00:00:00.01 | 6 |

|* 5 | INDEX RANGE SCAN | PAYROLL_I1 | 1 | 10 | | 1 (0)| 00:00:01 | 4 |00:00:00.01 | 2 |

|* 6 | INDEX UNIQUE SCAN | PERSONNEL_U1 | 4 | 1 | | 0 (0)| | 4 |00:00:00.01 | 6 |

| 7 | TABLE ACCESS BY INDEX ROWID | PERSONNEL | 4 | 1 | 26 | 1 (0)| 00:00:01 | 4 |00:00:00.01 | 4 |

Predicate Information (identified by operation id):

 5 - access("PAY"."SALARY"=199170)

 6 - access("PER"."EMPID"="PAY"."EMPID")

NoSQL and Big Data Fernandez

www.odtug.com 20 ODTUG Kscope14

Uncorrelated subquery
The second formulation uses an uncorrelated subquery. Even though the form of the query suggests that the optimizer will

drive from the personnel table to the payroll table, the optimizer instead chooses to drive the other way. It is also smart

enough to realize that duplicate rows will not be introduced and it therefore dispenses with the deduplication operation seen

in the previous execution plan.

SELECT per.empid, per.lname

FROM personnel per

WHERE per.empid IN (SELECT pay.empid

FROM payroll pay

WHERE pay.salary = 199170);

EMPID LNAME

--------- ---------------

 01836 KULGDTAFIIYUDIE

 04535 ZZNDFPAGHWQAVSV

 06679 CCAZNDOPKSKEQRS

 07751 EFBDSEXSBJUQJIF

SQL_ID avhtrqsvaay7j, child number 0

SELECT per.empid, per.lname FROM personnel per WHERE per.empid IN

(SELECT pay.empid FROM payroll pay WHERE pay.salary = 199170)

Plan hash value: 3342999746

--

| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time | A-Rows | A-Time | Buffers |

--

| 0 | SELECT STATEMENT | | 1 | | | 20 (100)| | 4 |00:00:00.01 | 17 |

| 1 | NESTED LOOPS | | 1 | | | | | 4 |00:00:00.01 | 17 |

| 2 | NESTED LOOPS | | 1 | 10 | 410 | 20 (0)| 00:00:01 | 4 |00:00:00.01 | 13 |

| 3 | TABLE ACCESS BY INDEX ROWID| PAYROLL | 1 | 10 | 150 | 10 (0)| 00:00:01 | 4 |00:00:00.01 | 7 |

|* 4 | INDEX RANGE SCAN | PAYROLL_I1 | 1 | 10 | | 1 (0)| 00:00:01 | 4 |00:00:00.01 | 3 |

|* 5 | INDEX UNIQUE SCAN | PERSONNEL_U1 | 4 | 1 | | 0 (0)| | 4 |00:00:00.01 | 6 |

| 6 | TABLE ACCESS BY INDEX ROWID | PERSONNEL | 4 | 1 | 26 | 1 (0)| 00:00:01 | 4 |00:00:00.01 | 4 |

--

Predicate Information (identified by operation id):

 4 - access("PAY"."SALARY"=199170)

Correlated subquery
The third formulation uses the relational calculus method. This time too, the query optimizer drives from the payroll table to

the personnel table but this time it thinks that a deduplication operation is necessary.

SELECT per.empid, per.lname

FROM personnel per

WHERE EXISTS (SELECT *

 FROM payroll pay

 WHERE per.empid = pay.empid

 AND pay.salary = 199170);

EMPID LNAME

--------- ---------------

 01836 KULGDTAFIIYUDIE

 04535 ZZNDFPAGHWQAVSV

 06679 CCAZNDOPKSKEQRS

 07751 EFBDSEXSBJUQJIF

SQL_ID gdazhxm5xdu44, child number 0

SELECT per.empid, per.lname FROM personnel per WHERE EXISTS (SELECT *

FROM payroll pay WHERE per.empid = pay.empid AND pay.salary =

199170)

Plan hash value: 864898783

| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | 1 | | | 16 (100)| | 4 |00:00:00.01 | 16 |

| 1 | NESTED LOOPS | | 1 | | | | | 4 |00:00:00.01 | 16 |

| 2 | NESTED LOOPS | | 1 | 10 | 410 | 16 (7)| 00:00:01 | 4 |00:00:00.01 | 12 |

| 3 | SORT UNIQUE | | 1 | 10 | 150 | 10 (0)| 00:00:01 | 4 |00:00:00.01 | 6 |

| 4 | TABLE ACCESS BY INDEX ROWID| PAYROLL | 1 | 10 | 150 | 10 (0)| 00:00:01 | 4 |00:00:00.01 | 6 |

|* 5 | INDEX RANGE SCAN | PAYROLL_I1 | 1 | 10 | | 1 (0)| 00:00:01 | 4 |00:00:00.01 | 2 |

|* 6 | INDEX UNIQUE SCAN | PERSONNEL_U1 | 4 | 1 | | 0 (0)| | 4 |00:00:00.01 | 6 |

| 7 | TABLE ACCESS BY INDEX ROWID | PERSONNEL | 4 | 1 | 26 | 1 (0)| 00:00:01 | 4 |00:00:00.01 | 4 |

NoSQL and Big Data Fernandez

www.odtug.com 21 ODTUG Kscope14

Predicate Information (identified by operation id):

 5 - access("PAY"."SALARY"=199170)

 6 - access("PER"."EMPID"="PAY"."EMPID")

Scalar subquery in the WHERE clause
The fourth formulation uses a scalar subquery in the WHERE clause. Oracle performs the scalar subquery once for each

employee in the payroll table which is terribly inefficient.

SELECT per.empid, per.lname

FROM personnel per

WHERE (SELECT pay.salary FROM payroll pay WHERE pay.empid = per.empid) = 199170;

EMPID LNAME

--------- ---------------

 01836 KULGDTAFIIYUDIE

 04535 ZZNDFPAGHWQAVSV

 06679 CCAZNDOPKSKEQRS

 07751 EFBDSEXSBJUQJIF

SQL_ID ddgmw1whng5ah, child number 0

SELECT per.empid, per.lname FROM personnel per WHERE (SELECT pay.salary

FROM payroll pay WHERE pay.empid = per.empid) = 199170

Plan hash value: 3607962630

| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | 1 | | | 11133 (100)| | 4 |00:00:01.74 | 10551 |

|* 1 | FILTER | | 1 | | | | | 4 |00:00:01.74 | 10551 |

| 2 | TABLE ACCESS FULL | PERSONNEL | 1 | 9900 | 251K| 68 (0)| 00:00:01 | 9900 |00:00:00.13 | 204 |

| 3 | TABLE ACCESS BY INDEX ROWID| PAYROLL | 9900 | 1 | 15 | 2 (0)| 00:00:01 | 9900 |00:00:00.98 | 10347 |

|* 4 | INDEX UNIQUE SCAN | PAYROLL_U1 | 9900 | 1 | | 1 (0)| 00:00:01 | 9900 |00:00:00.34 | 447 |

Predicate Information (identified by operation id):

 1 - filter(=199170)

 4 - access("PAY"."EMPID"=:B1)

Scalar subquery in the SELECT clause
The fifth formulation uses a scalar subquery in the SELECT clause. The query optimizer executed the scalar subquery once

for each salary of 199170. Step 1 is executed for each row returned by step 3. The number of buffers reported for line 0

should therefore be 26 not 16.

SELECT DISTINCT pay.empid, (SELECT lname FROM personnel per WHERE per.empid = pay.empid)

FROM payroll pay

WHERE pay.salary = 199170;

EMPID (SELECTLNAMEFRO

--------- ---------------

 01836 KULGDTAFIIYUDIE

 04535 ZZNDFPAGHWQAVSV

 07751 EFBDSEXSBJUQJIF

 06679 CCAZNDOPKSKEQRS

SQL_ID 6y4kznqkvq635, child number 0

SELECT DISTINCT pay.empid, (SELECT lname FROM personnel per WHERE

per.empid = pay.empid) FROM payroll pay WHERE pay.salary = 199170

Plan hash value: 750911849

| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | 1 | | | 11 (100)| | 4 |00:00:00.01 | 16 |

| 1 | TABLE ACCESS BY INDEX ROWID | PERSONNEL | 4 | 1 | 26 | 2 (0)| 00:00:01 | 4 |00:00:00.01 | 10 |

|* 2 | INDEX UNIQUE SCAN | PERSONNEL_U1 | 4 | 1 | | 1 (0)| 00:00:01 | 4 |00:00:00.01 | 6 |

| 3 | HASH UNIQUE | | 1 | 10 | 150 | 11 (10)| 00:00:01 | 4 |00:00:00.01 | 16 |

| 4 | TABLE ACCESS BY INDEX ROWID| PAYROLL | 1 | 10 | 150 | 10 (0)| 00:00:01 | 4 |00:00:00.01 | 6 |

|* 5 | INDEX RANGE SCAN | PAYROLL_I1 | 1 | 10 | | 1 (0)| 00:00:01 | 4 |00:00:00.01 | 2 |

Predicate Information (identified by operation id):

NoSQL and Big Data Fernandez

www.odtug.com 22 ODTUG Kscope14

 2 - access("PER"."EMPID"=:B1)

 5 - access("PAY"."SALARY"=199170)

Aggregate function to check existence
The sixth formulation uses the COUNT aggregate function to check existence. I obtained surprising results; the execution

plan was terribly inefficient when the constant was placed on the right hand side of the condition but was superbly efficient

when the constant was placed on the left hand side. The efficient result testifies to the power of the optimizer while the

inefficient result testifies to its fallibility.

SELECT per.empid, per.lname

FROM personnel per

WHERE (SELECT count(*) FROM payroll pay WHERE pay.empid = per.empid AND pay.salary = 199170) > 0;

EMPID LNAME

--------- ---------------

 01836 KULGDTAFIIYUDIE

 04535 ZZNDFPAGHWQAVSV

 06679 CCAZNDOPKSKEQRS

 07751 EFBDSEXSBJUQJIF

SQL_ID 9df084bq799p1, child number 0

SELECT per.empid, per.lname FROM personnel per WHERE (SELECT count(*)

FROM payroll pay WHERE pay.empid = per.empid AND pay.salary = 199170) >

0

Plan hash value: 3561519015

--

| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time | A-Rows | A-Time | Buffers |

--

| 0 | SELECT STATEMENT | | 1 | | | 9970 (100)| | 4 |00:00:01.71 | 10555 |

|* 1 | FILTER | | 1 | | | | | 4 |00:00:01.71 | 10555 |

| 2 | TABLE ACCESS FULL | PERSONNEL | 1 | 9900 | 251K| 68 (0)| 00:00:01 | 9900 |00:00:00.09 | 204 |

| 3 | SORT AGGREGATE | | 9900 | 1 | 15 | | | 9900 |00:00:01.20 | 10351 |

|* 4 | TABLE ACCESS BY INDEX ROWID| PAYROLL | 9900 | 1 | 15 | 2 (0)| 00:00:01 | 4 |00:00:00.73 | 10351 |

|* 5 | INDEX UNIQUE SCAN | PAYROLL_U1 | 9900 | 1 | | 1 (0)| 00:00:01 | 9900 |00:00:00.27 | 451 |

--

Predicate Information (identified by operation id):

 1 - filter(>0)

 4 - filter("PAY"."SALARY"=199170)

 5 - access("PAY"."EMPID"=:B1)

SELECT per.empid, per.lname

FROM personnel per

WHERE 0 < (SELECT count(*) FROM payroll pay WHERE pay.empid = per.empid AND pay.salary = 199170);

EMPID LNAME

--------- ---------------

 01836 KULGDTAFIIYUDIE

 04535 ZZNDFPAGHWQAVSV

 06679 CCAZNDOPKSKEQRS

 07751 EFBDSEXSBJUQJIF

SQL_ID 8bk6d3udbcbp4, child number 0

SELECT per.empid, per.lname FROM personnel per WHERE 0 < (SELECT

count(*) FROM payroll pay WHERE pay.empid = per.empid AND pay.salary =

199170)

Plan hash value: 864898783

| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | 1 | | | 16 (100)| | 4 |00:00:00.01 | 16 |

| 1 | NESTED LOOPS | | 1 | | | | | 4 |00:00:00.01 | 16 |

| 2 | NESTED LOOPS | | 1 | 10 | 410 | 16 (7)| 00:00:01 | 4 |00:00:00.01 | 12 |

| 3 | SORT UNIQUE | | 1 | 10 | 150 | 10 (0)| 00:00:01 | 4 |00:00:00.01 | 6 |

| 4 | TABLE ACCESS BY INDEX ROWID| PAYROLL | 1 | 10 | 150 | 10 (0)| 00:00:01 | 4 |00:00:00.01 | 6 |

|* 5 | INDEX RANGE SCAN | PAYROLL_I1 | 1 | 10 | | 1 (0)| 00:00:01 | 4 |00:00:00.01 | 2 |

|* 6 | INDEX UNIQUE SCAN | PERSONNEL_U1 | 4 | 1 | | 0 (0)| | 4 |00:00:00.01 | 6 |

| 7 | TABLE ACCESS BY INDEX ROWID | PERSONNEL | 4 | 1 | 26 | 1 (0)| 00:00:01 | 4 |00:00:00.01 | 4 |

Predicate Information (identified by operation id):

 5 - access("PAY"."SALARY"=199170)

 6 - access("PAY"."EMPID"="PER"."EMPID")

NoSQL and Big Data Fernandez

www.odtug.com 23 ODTUG Kscope14

Correlated subquery (double negative)
You may have thought to ask: how does one know for sure that all the above queries are equivalent. The answer is that one

would have to convert them to a “canonical” form. All semantically equivalent queries would be converted into the same

canonical form. It’s a mechanical chore that could be automated but unfortunately such an automation tool does not exist.

Here are two more formulations with different query plans. Are they semantically equivalent to the previous queries?

SELECT per.empid, per.lname

FROM personnel per

WHERE NOT EXISTS (SELECT *

 FROM payroll pay

 WHERE pay.empid = per.empid

 AND pay.salary != 199170);

EMPID LNAME

--------- ---------------

 01836 KULGDTAFIIYUDIE

 04535 ZZNDFPAGHWQAVSV

 06679 CCAZNDOPKSKEQRS

 07751 EFBDSEXSBJUQJIF

SQL_ID ayvvv10ah456y, child number 0

SELECT per.empid, per.lname FROM personnel per WHERE NOT EXISTS (SELECT

* FROM payroll pay WHERE pay.empid = per.empid AND pay.salary !=

199170)

Plan hash value: 103534934

--

| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time | A-Rows | A-Time | Buffers |

--

| 0 | SELECT STATEMENT | | 1 | | | 80 (100)| | 4 |00:00:00.71 | 241 |

|* 1 | HASH JOIN RIGHT ANTI| | 1 | 99 | 4059 | 80 (2)| 00:00:01 | 4 |00:00:00.71 | 241 |

|* 2 | TABLE ACCESS FULL | PAYROLL | 1 | 9890 | 144K| 11 (0)| 00:00:01 | 9896 |00:00:00.06 | 37 |

| 3 | TABLE ACCESS FULL | PERSONNEL | 1 | 9900 | 251K| 68 (0)| 00:00:01 | 9900 |00:00:00.06 | 204 |

--

Predicate Information (identified by operation id):

 1 - access("PAY"."EMPID"="PER"."EMPID")

 2 - filter("PAY"."SALARY"<>199170)

Uncorrelated subquery (double negative)
SELECT per.empid, per.lname

FROM personnel per

WHERE per.empid NOT IN (SELECT pay.empid

FROM payroll pay

WHERE pay.salary != 199170);

EMPID LNAME

--------- ---------------

 01836 KULGDTAFIIYUDIE

 04535 ZZNDFPAGHWQAVSV

 06679 CCAZNDOPKSKEQRS

 07751 EFBDSEXSBJUQJIF

SQL_ID 67azvy1nw1am1, child number 0

SELECT per.empid, per.lname FROM personnel per WHERE per.empid NOT IN

(SELECT pay.empid FROM payroll pay WHERE pay.salary != 199170)

Plan hash value: 2202369223

| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost (%CPU)| E-Time | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | 1 | | | 80 (100)| | 4 |00:00:00.53 | 241 |

|* 1 | HASH JOIN RIGHT ANTI NA| | 1 | 99 | 4059 | 80 (2)| 00:00:01 | 4 |00:00:00.53 | 241 |

|* 2 | TABLE ACCESS FULL | PAYROLL | 1 | 9890 | 144K| 11 (0)| 00:00:01 | 9896 |00:00:00.07 | 37 |

| 3 | TABLE ACCESS FULL | PERSONNEL | 1 | 9900 | 251K| 68 (0)| 00:00:01 | 9900 |00:00:00.06 | 204 |

Predicate Information (identified by operation id):

 1 - access("PER"."EMPID"="PAY"."EMPID")

 2 - filter("PAY"."SALARY"<>199170)

Here are the elapsed time (microseconds) and consistent gets for each of the queries, sorted by elapsed time.

NoSQL and Big Data Fernandez

www.odtug.com 24 ODTUG Kscope14

METHOD SQL_ID PLAN_HASH_VALUE LAST_ELAPSED_TIME LAST_CR_BUFFER_GETS

--------------------------------------- ------------- --------------- ----------------- -------------------

Uncorrelated subquery avhtrqsvaay7j 3342999746 129 17

Aggregate function to check existence 8bk6d3udbcbp4 864898783 135 16

Correlated subquery gdazhxm5xdu44 864898783 405 16

Relational algebra method cx451qsx2qfcv 3901981856 426 16

Scalar subquery in the SELECT clause 6y4kznqkvq635 750911849 701 16

Uncorrelated subquery (double negative) 67azvy1nw1am1 2202369223 7702 241

Correlated subquery (double negative) ayvvv10ah456y 103534934 14499 241

Scalar subquery in the WHERE clause ddgmw1whng5ah 3607962630 195999 10549

Aggregate function to check existence 9df084bq799p1 3561519015 310690 10554

Appendix C—We don’t use databases; we don’t use indexes
Mogens Norgaard is the co-founder of the OakTable Network, which bills itself as “a network for the Oracle scientist, who

believes in better ways of administering and developing Oracle-based systems.” Whenever salespeople phone him, he claims

that he puts them off by saying that he just doesn’t use the products that they are calling about.

When the office furniture company phones, he says “We don’t use office furniture.” When the newspaper company phones,

he says “We don’t read newspapers.” When the girl scouts phone, he probably says “We don’t eat cookies.”

Once he got a phone call from the phone company.

You can only imagine how that conversation went. Read the whole story at http://wedonotuse.com/stories-and-answers.aspx.

I wonder what Mogens would say if a database vendor phoned. I can imagine him saying “We don’t use databases. We don’t

use indexes. We store all our data in compressed text files. Each compressed text file contains one year of data for one

location. There is a separate subdirectory for each year. We have a terabyte of data going back to 1901 so we currently have

113 subdirectories. The performance is just fine, thank you.”

On second thoughts, that’s just too far-fetched.

You see, back in the early days of the relational era, the creator of relational theory, Dr. Edward Codd married relational

theory with transactional database management systems (a.k.a. ACID DBMS) and the Relational Database Management

System (RDBMS) was born. He authored two influential ComputerWorld articles—“Is your DBMS really

relational?” (October 14, 1985) and “Does your DBMS run by the rules?” (October 21, 1985)—that set the direction of the

relational movement for the next quarter century. Today, the full declarative power of “data base sublanguages” (the term

coined by Dr. Codd) such as Structured Query Language (SQL) is only available within the confines of a transactional

database management system.

But it shoudn’t have to be that way.

Consider the running example of “big data” used in Hadoop: The Definitive Guide. The National Climatic Data

Center publishes hourly climatic data such as temperature and pressure from more than 10,000 recording stations all over the

world. Data from 1901 onwards is available in text files. Each line of text contains the station code, the timestamp, and a

number of climatic readings. The format is documented at ftp://ftp.ncdc.noaa.gov/pub/data/noaa/ish-format-document.pdf.

The files are organized into subdirectories, one subdirectory for each year. Each subdirectory contains one file from each

recording station that was in operation during that year. The individual files are compressed using gzip. All the files can be

downloaded from ftp://ftp.ncdc.noaa.gov/pub/data/noaa/.

You might have already guessed where I am going with this.

Conceptually the above terabyte-sized data set is a single table. But it should not be necessary to uncompress and load this

huge quantity of structured non-transactional data into a transactional database management system in order to query it. The

choice of physical representation conserves storage space and is a technical detail that is irrelevant to the logical presentation

of the data set as a single table; it is a technical detail that users don’t care about. As Dr. Codd said in the opening sentence of

his 1970 paper A Relational Model of Data For Large Shared Data Banks (faithfully reproduced in the 100th issue of

the NoCOUG Journal), “future users of large data banks must be protected from having to know how the data is organized

in the machine (the internal representation).”

Why shouldn’t we be able to query the above data set using good old SQL?

Well you can do just that with the Oracle query engine and you don’t have to load it into an Oracle database first. You can

even take advantage of partitioning and parallelism. You can also write queries that mix and match data from the database

and the filesystem.

http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://www.oaktable.net/
http://wedonotuse.com/stories-and-answers.aspx
http://en.wikipedia.org/wiki/Edgar_F._Codd
http://books.google.com/books?id=Nff49D7vnJcC&printsec=frontcover
http://www.ncdc.noaa.gov/oa/climate/isd/
http://www.ncdc.noaa.gov/oa/climate/isd/
ftp://ftp.ncdc.noaa.gov/pub/data/noaa/ish-format-document.pdf
ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf#page=10
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf#page=10

NoSQL and Big Data Fernandez

www.odtug.com 25 ODTUG Kscope14

The following demonstrations were performed using a pre-Built developer VM for Oracle VM VirtualBox. The version of

Oracle Database is 12.1.0.1.

SQL*Plus: Release 12.1.0.1.0 Production on Fri Aug 16 1

0:45:04 2013

Copyright (c) 1982, 2013, Oracle. All rights reserved.

 In the demonstrations, we only consider the years from 1901 to 1904. Here is the directory structure.

/home/oracle/app/oracle/admin/orcl/dpdump/noaa

/home/oracle/app/oracle/admin/orcl/dpdump/noaa/1904

/home/oracle/app/oracle/admin/orcl/dpdump/noaa/1902

/home/oracle/app/oracle/admin/orcl/dpdump/noaa/1903

/home/oracle/app/oracle/admin/orcl/dpdump/noaa/1901

We first need to create “directories” and define an “external table.” The definition of this external table specifies a

preprocessing script which is the secret sauce that makes it possible for the query engine to traverse the subdirectories and

uncompress the data.

connect / as sysdba

alter session set container=pdborcl;

create or replace directory share_dir

 as '/u01/app/oracle/admin/orcl/share';

create or replace directory noaa_dir

 as '/u01/app/oracle/admin/orcl/share/noaa';

create or replace directory noaa_1901_dir

 as '/u01/app/oracle/admin/orcl/share/noaa_1901';

create or replace directory noaa_1902_dir

 as '/u01/app/oracle/admin/orcl/share/noaa_1902';

create or replace directory noaa_1903_dir

 as '/u01/app/oracle/admin/orcl/share/noaa_1903';

create or replace directory noaa_1904_dir

 as '/u01/app/oracle/admin/orcl/share/noaa_1904';

grant all on directory share_dir to public;

grant all on directory noaa_dir to public;

grant all on directory noaa_1901_dir to public;

grant all on directory noaa_1902_dir to public;

grant all on directory noaa_1903_dir to public;

grant all on directory noaa_1904_dir to public;

connect iggy/iggy@pdborcl

drop table temperatures;

create table temperatures

(

 station_code char(6),

 datetime char(12),

 temperature char(5)

)

organization external

(

 type oracle_loader

 default directory share_dir

 access parameters

 (

 records delimited by newline

 preprocessor share_dir:'uncompress.sh'

 fields

 (

 station_code position(1:6) char(4),

 datetime position(7:18) char(12),

 temperature position(19:23) char(5)

http://www.oracle.com/technetwork/database/enterprise-edition/databaseappdev-vm-161299.html

NoSQL and Big Data Fernandez

www.odtug.com 26 ODTUG Kscope14

)

)

 location ('noaa')

);

Here’s the tiny preprocessing script that makes it possible for Oracle to traverse the subdirectories and uncompress the data.

It recursively traverses the file system beginning with the location specified by the query engine; that is, the location

specified in the table definition. It uncompresses all zipped files it finds and sends the output to the “cut” utility which cuts

out only those column positions that we care about and writes what’s left to standard output, not to the filesystem.

#!/bin/sh

/usr/bin/find $1 -name "*.gz" -exec /bin/zcat {} \; | /usr/bin/cut -c5-10,16-27,88-92

All the capabilities of SQL—including analytic functions and pivoting—can now be exploited as shown in the following

example. For each month in the year 1901, we list the top three recording stations in terms of average monthly temperature.

set pagesize 66

select /*+ gather_plan_statistics */ * from

(

 select

 month,

 station_code,

 dense_rank() over (partition by month order by average) as rank

 from

 (

 select

 substr(datetime,1,4)||'/'||substr(datetime,5,2) as month,

 station_code,

 avg(temperature) as average

 from temperatures

 where datetime >= '1901' and datetime < '1902'

 group by

 substr(datetime,1,4)||'/'||substr(datetime,5,2),

 station_code

)

)

pivot(max(station_code) for rank in (1, 2, 3))

order by month;

MONTH 1 2 3

------------------------- ------ ------ ------

1901/01 2270 0296 0297

1901/02 2270 0290 0296

1901/03 2270 0290 0296

1901/04 0290 0295 0298

1901/05 0290 0295 0298

1901/06 0290 0298 0295

1901/07 0290 0295 2270

1901/08 2270 0290 0296

1901/09 0290 2270 0296

1901/10 2270 0296 0290

1901/11 2270 0296 0297

1901/12 2270 0296 0290

We can also use “partition views” and take advantage of “partition pruning.” For those who don’t remember, partition views

are a really old feature that predates “real” partitioning in Oracle 8.0 and above. Partition views continue to work just fine

today, even in Oracle Database 12c.

Let’s create a separate table definition for each year and then use a partition view to tie the tables together.

create table temperatures_1901

(

 station_code char(6),

 datetime char(12),

 temperature char(5)

)

organization external

(

 type oracle_loader

 default directory noaa_dir

 access parameters

 (

 records delimited by newline

NoSQL and Big Data Fernandez

www.odtug.com 27 ODTUG Kscope14

 preprocessor share_dir:'uncompress.sh'

 fields

 (

 station_code position(1:6) char(4),

 datetime position(7:18) char(12),

 temperature position(19:23) char(5)

)

)

 location ('1901')

);

-- the remaining table definitions are not shown for brevity

create or replace view temperatures_v as

select * from temperatures_1901

where datetime >= '190101010000' and datetime < '190201010000'

 union all

select * from temperatures_1902

where datetime >= '190201010000' and datetime < '190301010000'

 union all

select * from temperatures_1903

where datetime >= '190301010000' and datetime < '190401010000'

 union all

select * from temperatures_1904

where datetime >= '190401010000' and datetime < '190501010000';

When we specify only a portion of the temperatures_v view, the query plan confirms that the unneeded branches of the view

are filtered out by the query optimizer.

select /*+ gather_plan_statistics */ * from

(

 select

 month,

 station_code,

 dense_rank() over (partition by month order by average) as rank

 from

 (

 select

 substr(datetime,1,4)||'/'||substr(datetime,5,2) as month,

 station_code,

 avg(temperature) as average

 from temperatures_v

 where datetime >= '190101010000' and datetime < '190201010000'

 group by

 substr(datetime,1,4)||'/'||substr(datetime,5,2),

 station_code

)

)

pivot(max(station_code) for rank in (1, 2, 3))

order by month;

Plan hash value: 2790062116

--

| Id | Operation | Name | Starts | A-Rows | A-Time | Buffers |

--

| 0 | SELECT STATEMENT | | 1 | 12 |00:00:00.11 | 64 |

| 1 | SORT GROUP BY PIVOT | | 1 | 12 |00:00:00.11 | 64 |

| 2 | VIEW | | 1 | 72 |00:00:00.11 | 64 |

| 3 | WINDOW SORT | | 1 | 72 |00:00:00.11 | 64 |

| 4 | HASH GROUP BY | | 1 | 72 |00:00:00.11 | 64 |

| 5 | VIEW | TEMPERATURES_V | 1 | 6565 |00:00:01.43 | 64 |

| 6 | UNION-ALL | | 1 | 6565 |00:00:00.48 | 64 |

|* 7 | EXTERNAL TABLE ACCESS FULL | TEMPERATURES_1901 | 1 | 6565 |00:00:00.34 | 64 |

|* 8 | FILTER | | 1 | 0 |00:00:00.01 | 0 |

|* 9 | EXTERNAL TABLE ACCESS FULL| TEMPERATURES_1902 | 0 | 0 |00:00:00.01 | 0 |

|* 10 | FILTER | | 1 | 0 |00:00:00.01 | 0 |

|* 11 | EXTERNAL TABLE ACCESS FULL| TEMPERATURES_1903 | 0 | 0 |00:00:00.01 | 0 |

|* 12 | FILTER | | 1 | 0 |00:00:00.01 | 0 |

|* 13 | EXTERNAL TABLE ACCESS FULL| TEMPERATURES_1904 | 0 | 0 |00:00:00.01 | 0 |

--

Predicate Information (identified by operation id):

 7 - filter(("DATETIME">='190101010000' AND "DATETIME"<'190201010000'))

 8 - filter(NULL IS NOT NULL)

 9 - filter(("DATETIME">='190201010000' AND "DATETIME"<'190201010000'))

 10 - filter(NULL IS NOT NULL)

 11 - filter(("DATETIME">='190301010000' AND "DATETIME"<'190201010000'))

 12 - filter(NULL IS NOT NULL)

NoSQL and Big Data Fernandez

www.odtug.com 28 ODTUG Kscope14

 13 - filter(("DATETIME">='190401010000' AND "DATETIME"<'190201010000'))

Finally, let’s check whether query execution can be parallelized. And so it can. Notice the PX SELECTOR row sources in the

query execution plan. This is a new feature of Oracle Database 12c. Oracle Database 12c is capable of executing UNION

ALL branches in parallel. (See Concurrent Execution of Union All.)

alter table temperatures_1901 parallel 2;

select /*+ gather_plan_statistics */ * from

(

 select

 month,

 station_code,

 dense_rank() over (partition by month order by average) as rank

 from

 (

 select

 substr(datetime,1,4)||'/'||substr(datetime,5,2) as month,

 station_code,

 avg(temperature) as average

 from temperatures_v

 where datetime >= '190101010000' and datetime < '190501010000'

 group by

 substr(datetime,1,4)||'/'||substr(datetime,5,2),

 station_code

)

)

pivot(max(station_code) for rank in (1, 2, 3))

order by month;

Plan hash value: 3783481314

| Id | Operation | Name | Starts | TQ |IN-OUT| PQ Distrib | A-Rows | A-Time | Buffers |

| 0 | SELECT STATEMENT | | 1 | | | | 48 |00:00:00.50 | 64 |

| 1 | PX COORDINATOR | | 1 | | | | 48 |00:00:00.50 | 64 |

| 2 | PX SEND QC (ORDER) | :TQ10002 | 0 | Q1,02 | P->S | QC (ORDER) | 0 |00:00:00.01 | 0 |

| 3 | SORT GROUP BY | | 2 | Q1,02 | PCWP | | 48 |00:00:00.01 | 0 |

| 4 | PX RECEIVE | | 2 | Q1,02 | PCWP | | 48 |00:00:00.01 | 0 |

| 5 | PX SEND RANGE | :TQ10001 | 0 | Q1,01 | P->P | RANGE | 0 |00:00:00.01 | 0 |

| 6 | HASH GROUP BY PIVOT | | 2 | Q1,01 | PCWP | | 48 |00:00:00.02 | 0 |

| 7 | VIEW | | 2 | Q1,01 | PCWP | | 288 |00:00:00.02 | 0 |

| 8 | WINDOW SORT | | 2 | Q1,01 | PCWP | | 288 |00:00:00.02 | 0 |

| 9 | HASH GROUP BY | | 2 | Q1,01 | PCWP | | 288 |00:00:00.02 | 0 |

| 10 | PX RECEIVE | | 2 | Q1,01 | PCWP | | 288 |00:00:00.01 | 0 |

| 11 | PX SEND HASH | :TQ10000 | 0 | Q1,00 | P->P | HASH | 0 |00:00:00.01 | 0 |

| 12 | HASH GROUP BY | | 2 | Q1,00 | PCWP | | 288 |00:00:00.92 | 368 |

| 13 | VIEW | TEMPERATURES_V | 2 | Q1,00 | PCWP | | 26266 |00:00:05.53 | 368 |

| 14 | UNION-ALL | | 2 | Q1,00 | PCWP | | 26266 |00:00:02.79 | 368 |

| 15 | PX BLOCK ITERATOR | | 2 | Q1,00 | PCWC | | 6565 |00:00:01.12 | 90 |

|* 16 | EXTERNAL TABLE ACCESS FULL | TEMPERATURES_1901 | 1 | Q1,00 | PCWP | | 6565 |00:00:00.98 | 90 |

| 17 | PX SELECTOR | | 2 | Q1,00 | PCWP | | 6565 |00:00:01.02 | 90 |

|* 18 | EXTERNAL TABLE ACCESS FULL | TEMPERATURES_1902 | 2 | Q1,00 | PCWP | | 6565 |00:00:00.47 | 90 |

| 19 | PX SELECTOR | | 2 | Q1,00 | PCWP | | 6554 |00:00:00.49 | 85 |

|* 20 | EXTERNAL TABLE ACCESS FULL | TEMPERATURES_1903 | 2 | Q1,00 | PCWP | | 6554 |00:00:00.44 | 85 |

| 21 | PX SELECTOR | | 2 | Q1,00 | PCWP | | 6582 |00:00:00.57 | 85 |

|* 22 | EXTERNAL TABLE ACCESS FULL | TEMPERATURES_1904 | 2 | Q1,00 | PCWP | | 6582 |00:00:00.52 | 85 |

Predicate Information (identified by operation id):

 16 - filter(("DATETIME">='190101010000' AND "DATETIME"<'190201010000'))

 18 - filter(("DATETIME">='190201010000' AND "DATETIME"<'190301010000'))

 20 - filter(("DATETIME">='190301010000' AND "DATETIME"<'190401010000'))

 22 - filter(("DATETIME">='190401010000' AND "DATETIME"<'190501010000'))

I predict that the time is soon coming when we will be able to store structured non-transactional data outside a transactional

database management system while continuing to exploit the entire universe of indexing, partitioning, and clustering

techniques as well as the full power of relational languages, not only SQL.

http://docs.oracle.com/cd/E16655_01/server.121/e17613/parallel003.htm#VLDBG14131

