
NOSQL AND BIG DATA
FOR THE ORACLE DBA

Iggy Fernandez
NoCOUG Journal Editor

http://iggyfernandez.wordpress.com
The views expressed here are my own and not necessarily

those of Oracle and its affiliates

10/9/2013 1

http://iggyfernandez.wordpress.com/

Northern California
Oracle Users Group

• Celebrated 25th anniversary in November 2011
• Quarterly full-day conferences around the San Francisco Bay Area.

Keynote address plus three technical tracks.
• One-year membership costs $95. First conference is free.
• NoCOUG members get printed copies of the NoCOUG Journal. Also

available online for free download.
• 100th edition of the NoCOUG Journal contains a freshly typeset copy of Dr.

Codd’s first paper on relational theory.
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf

• Latest edition features interview with C. J. Date and Hugh Darwen “No! to
SQL!, No! to NoSQL!”
http://www.nocoug.org/Journal/NoCOUG_Journal_Latest.pdf.

10/9/2013 2

http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf
http://www.nocoug.org/Journal/NoCOUG_Journal_Latest.pdf

• The origins of NoSQL
• Performance, Scalability, and Availability without

NoSQL
• The false premise of NoSQL
• The NoSQL product landscape
• Learning resources
• What makes Relational so sacred?
• The mistakes of the relational camp
• Bonus slides

– NewSQL
– NoSQL Buyer’s Guide

Objectives

• Installation and operation of NoSQL products

Non-Objectives

NOSQL AND BIG DATA FOR
THE ORACLE DBA

The Origins of NoSQL

1. Extreme availability
2. Extreme performance
3. Extreme scalability

Dynamo Requirements

• “Customers should be able to view and add items to their
shopping cart even if disks are failing, network routes are
flapping, or data centers are being destroyed by
tornados. Therefore, the service responsible for
managing shopping carts requires that it can always write
to and read from its data store, and that its data needs to
be available across multiple data centers.”—Dynamo:
Amazon’s Highly Available Key-value Store

• “Experience at Amazon has shown that data stores that
provide ACID guarantees tend to have poor availability.
… Dynamo targets applications that operate with weaker
consistency (the “C” in ACID) if this results in high
availability.”—Dynamo: Amazon’s Highly Available Key-
value Store

Extreme Availability

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

• “There are many services on Amazon’s platform
that only need primary-key access to a data
store. For many services, such as those that
provide best seller lists, shopping carts,
customer preferences, session management,
sales rank, and product catalog, the common
pattern of using a relational database would
lead to inefficiencies and limit scale and
availability. Dynamo provides a simple primary-
key only interface to meet the requirements of
these applications.”—Dynamo: Amazon’s Highly
Available Key-value Store

Extreme Performance

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

• “Since each service uses its distinct instance
of Dynamo, its initial design targets a scale
of up to hundreds of storage hosts [only].”
—Dynamo: Amazon’s Highly Available Key-
value Store

Extreme Scalability

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

• Best seller lists, shopping carts, customer
preferences, session management, sales rank,
and product catalog

• Increases overall site availability by avoiding a
single point of failure

• No distributed transactions
• Eventual consistency

Dynamo Solution—
Functional Segmentation

• employee (employee#, name, birthdate)
• jobhistory (employee#, jobdate, title)
• salaryhistory (employee#, jobdate,

salarydate, salary)
• children (employee#, childname, birthyear)

Dynamo Solution—
Sharding

• Asynchronous replication
• Eventual consistency

Dynamo Solution—
Replication

• “Shopping carts are stored as binary objects (i.e.,
blobs) identified by unique keys. No operations
span multiple data items and there is no need for
relational schema.”—Dynamo: Amazon’s Highly
Available Key-value Store

• “Using tables to store objects is like driving your
car home and then disassembling it to put it in
the garage. It can be assembled again in the
morning, but one eventually asks whether this is
the most efficient way to park a car”—attributed
to Esther Dyson, Editor of the Release 1.0
newsletter.

Dynamo Solution—
BLOBs

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf

• Functional segmentation
• Sharding
• No distributed transactions
• Asynchronous replication
• Eventual consistency
• BLOBs
• No SQL
• Primary-key access
• Autocommit

Dynamo Solution
Summary

Amazon v/s eBay

• Functional segmentation
• Sharding
• No distributed transactions
• Asynchronous replication
• Eventual consistency
• BLOBs
• No SQL
• Primary-key access
• Autocommit

• Functional segmentation
• Sharding
• No distributed transactions
• Asynchronous replication
• Eventual consistency
• SQL
• Oracle
• Local transactions with ACID
• Middle-tier caching
• Middle-tier constraint

checking

10/9/2013 15

NOSQL AND BIG DATA FOR
THE ORACLE DBA

The False Premise of NoSQL

• “Nonatomic values can be discussed within the relational framework.
Thus, some domains may have relations as elements. These relations may,
in turn, be defined on nonsimple domains, and so on. For example, one of
the domains on which the relation employee is defined might be salary
history.”—CODD, E. F. A relational model of data for large shared data
banks. (1970).

• employee (
 employee#,
 name,
 birthdate,
 jobhistory (jobdate, title, salaryhistory (salarydate, salary)),
 children (childname, birthyear)
)

Zeroth Normal Form

http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf

• employee (employee#, name, birthdate)
• jobhistory (employee#, jobdate, title)
• salaryhistory (employee#, jobdate,

salarydate, salary)
• children (employee#, childname, birthyear)

First Normal Form

• Data from multiple tables stored in the same
block

• Hash clusters and indexed clusters
• Clustered tables can be indexed
• No join penalty
• Can define “object-relational” views and

INSTEAD OF triggers
http://iggyfernandez.wordpress.com/2013/07
/28/no-to-sql-and-no-to-nosql/

Oracle Table Clusters

http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/

Oracle Table Clusters
Example

INSERT INTO employees VALUES (1, 'IGNATIUS', '01-JAN-1970');

INSERT INTO children VALUES (1, 'INIGA', '01-JAN-2001');

INSERT INTO children VALUES (1, 'INIGO', '01-JAN-2002');

INSERT INTO job_history VALUES (1, '01-JAN-1991', 'PROGRAMMER');

INSERT INTO job_history VALUES (1, '01-JAN-1992', 'DATABASE ADMIN');

INSERT INTO salary_history VALUES (1, '01-JAN-1991', '1-FEB-1991', 1000);

INSERT INTO salary_history VALUES (1, '01-JAN-1991', '1-MAR-1991', 1000);

INSERT INTO salary_history VALUES (1, '01-JAN-1992', '1-FEB-1992', 2000);

INSERT INTO salary_history VALUES (1, '01-JAN-1992', '1-MAR-1992', 2000);

10/9/2013 20

Oracle Table Clusters
Example

CREATE OR REPLACE VIEW employees_view AS
SELECT
 employee#,
 name,
 birth_date,
 CAST
 (
 MULTISET
 (
 SELECT child_name, birth_date
 FROM children
 WHERE employee#=e.employee#
)
 AS children_tab
) children,
 CAST
 (
 MULTISET
 (
 SELECT

 job_date,
 title,
 CAST
 (
 MULTISET
 (
 SELECT salary_date, salary
 FROM salary_history
 WHERE employee#=e.employee#
 AND job_date=jh.job_date
)
 AS salary_history_tab
) salary_history
 FROM job_history jh
 WHERE employee#=e.employee#
)
 AS job_history_tab
) job_history
FROM employees e;

10/9/2013 21

Object-Relational View

SELECT * FROM employees_view WHERE employee# = 1;

 EMPLOYEE# NAME BIRTH_DAT
---------- ---------------- ---------
CHILDREN(CHILD_NAME, BIRTH_DATE)
--
JOB_HISTORY(JOB_DATE, TITLE, SALARY_HISTORY(SALARY_DATE, SALARY))
--
 1 IGNATIUS 01-JAN-70
CHILDREN_TAB(CHILDREN_REC('INIGA', '01-JAN-01'), CHILDREN_REC('INIGO', '01-JAN-02'))
JOB_HISTORY_TAB(JOB_HISTORY_REC('01-JAN-91', 'PROGRAMMER', SALARY_HISTORY_TAB(SALARY_HISTORY_REC('01-FEB-91', 1000), SALARY_HISTORY_
REC('01-MAR-91', 1000))), JOB_HISTORY_REC('01-JAN-92', 'DATABASE ADMIN', SALARY_HISTORY_TAB(SALARY_HISTORY_REC('01-FEB-92', 2000), S
ALARY_HISTORY_REC('01-MAR-92', 2000))))

Plan hash value: 2117652374

--
| Id | Operation | Name | Starts | E-Rows |E-Bytes| Cost | A-Rows | A-Time | Buffers |
--
0	SELECT STATEMENT		1			1	1	00:00:00.01	1
* 1	TABLE ACCESS HASH	CHILDREN	1	1	32		2	00:00:00.01	1
* 2	TABLE ACCESS HASH	SALARY_HISTORY	2	1	44		4	00:00:00.01	3
* 3	TABLE ACCESS HASH	JOB_HISTORY	1	1	32		2	00:00:00.01	1
* 4	TABLE ACCESS HASH	EMPLOYEES	1	845	27040		1	00:00:00.01	1
--

10/9/2013 22

INSTEAD OF Triggers

INSERT INTO employees_view
VALUES
(
 2,
 'YGNACIO',
 '01-JAN-70',
 CHILDREN_TAB(CHILDREN_REC('INIGA', '01-JAN-01'), CHILDREN_REC('INIGO', '01-JAN-02')),
 JOB_HISTORY_TAB
 (
 JOB_HISTORY_REC
 (
 '01-JAN-91',
 'PROGRAMMER',
 SALARY_HISTORY_TAB(SALARY_HISTORY_REC('01-FEB-91', 1000), SALARY_HISTORY_REC('01-MAR-91', 1000))
),
 JOB_HISTORY_REC
 (
 '01-JAN-92',
 'DATABASE ADMIN',
 SALARY_HISTORY_TAB(SALARY_HISTORY_REC('01-FEB-92', 2000), SALARY_HISTORY_REC('01-MAR-92', 2000))
)
)
);

SQL> SELECT * FROM employees_view WHERE employee# = 2;

 EMPLOYEE# NAME BIRTH_DAT
---------- ---------------- ---------
CHILDREN(CHILD_NAME, BIRTH_DATE)
--
JOB_HISTORY(JOB_DATE, TITLE, SALARY_HISTORY(SALARY_DATE, SALARY))
--
 2 YGNACIO 01-JAN-70
CHILDREN_TAB(CHILDREN_REC('INIGA', '01-JAN-01'), CHILDREN_REC('INIGO', '01-JAN-02'))
JOB_HISTORY_TAB(JOB_HISTORY_REC('01-JAN-91', 'PROGRAMMER', SALARY_HISTORY_TAB(SALARY_HISTORY_REC('01-FEB-91', 1000), SALARY_HISTORY_
REC('01-MAR-91', 1000))), JOB_HISTORY_REC('01-JAN-92', 'DATABASE ADMIN', SALARY_HISTORY_TAB(SALARY_HISTORY_REC('01-FEB-92', 2000), S
ALARY_HISTORY_REC('01-MAR-92', 2000))))

10/9/2013 23

“There are, of course, several possible ways in which a
system can detect inconsistencies and respond to them.
In one approach the system checks for possible
inconsistency whenever an insertion, deletion, or key
update occurs. Naturally, such checking will slow these
operations down. If an inconsistency has been generated,
details are logged internally, and if it is not remedied
within some reasonable time interval, either the user or
someone responsible for the security and integrity of the
data is notified. Another approach is to conduct
consistency checking as a batch operation once a day or
less frequently.”—CODD, E. F. A relational model of data
for large shared data banks. (1970).

Codd on Eventual Consistency

http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf

NOSQL AND BIG DATA FOR
THE ORACLE DBA

The NoSQL Landscape

• Key-Value Databases—Dynamo, Riak, Oracle
NoSQL

• Document Databases—Mongodb
• Column Family Databases—BigTable, HBase,

Cassandra
• Graph Databases—Neo4J
• Big Data—Hadoop

The NoSQL Landscape

Document Database—MongoDB

{
 "_id": ObjectId("4efa8d2b7d284dad101e4bc9"),
 "Last Name": "DUMONT",
 "First Name": "Jean",
 "Date of Birth": "01-22-1963"
}

{
 "_id": ObjectId("4efa8d2b7d284dad101e4bc7"),
 "Last Name": "PELLERIN",
 "First Name": "Franck",
 "Date of Birth": "09-19-1983",
 "Address": "1 chemin des Loges",
 "City": "VERSAILLES"
}

{
 "_id": ObjectId("4efa8d2b7d284dad101e4bc7"),
 "Last Name": "PELLERIN",
 "First Name": "Franck",
 "Date of Birth": "09-19-1983",
 "phoneNumber": [
 {
 "type": "home",
 "number": "212 555-1234"
 },
 {
 "type": "fax",
 "number": "646 555-4567",
 "verified": false
 }
],
 "Address": {
 "Street": "1 chemin des Loges",
 "City": "VERSAILLES"
 },
 "Months at Present Address": 37
}

10/9/2013 27

Graph Database—Shortest Path
Problem

Graph Database—Social
Networks

Map/Reduce

Map/Reduce

Map Reduce

Map
(
 String key,
 String value
):
// key: document name
// value: document contents
for each word w in value:
 EmitIntermediate(w, "1");

Reduce
(
 String key,
 Iterator values
):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:
 result += ParseInt(v);
Emit(AsString(result));

• “Dirty secret of Big Data is you can not able
deploy if you not have SQL expert on staff.”—
DevOps Borat

• Pig, Hive, Tenzing, Impala

The Big Secret of Big Data

• Seven Databases in Seven Weeks by Eric Redmond and
Jim R. Wilson

• NoSQL Distilled by Pramod Sadalage and Martin Fowler
• KVLite for Windows (single-process version of Oracle

NoSQL Database)
• Oracle NoSQL hands-on workshop by Anuj Sahni
• Oracle NoSQL presentation by Anuj Sahni
• Cloudera QuickStart VM (available in VMware,

VirtualBox and KVM flavors)
• Benchmarking Cloud Serving Systems With YCSB by B.

F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears

Resources

http://www.amazon.com/Seven-Databases-Weeks-Movement-ebook/dp/B00AYQNR50/
http://www.amazon.com/NoSQL-Distilled-Emerging-Persistence-ebook/dp/B0090J3SYW/
http://docs.oracle.com/cd/NOSQL/html/quickstart.html
http://www.nocoug.org/download/2013-02/NoCOUG_201302_Anuj_Sahni_Demonstration.pdf
http://www.nocoug.org/download/2013-02/NoCOUG_201302_Anju_Sahni_Oracle_NoSQL_Database.pdf
http://www.cloudera.com/content/support/en/downloads/download-components/download-products.html?productID=F6mO278Rvo

NOSQL AND BIG DATA FOR
THE ORACLE DBA

What makes relational so sacred?

“Future users of large data banks must be
protected from having to know how the data is
organized in the machine (the internal
representation).” CODD, E. F. A relational model
of data for large shared data banks. (1970).

Simplicity?

http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf

“Surely, in the choice of logical data structures that a
system is to support, there is one consideration of
absolutely paramount importance - and that is the
convenience of the majority of users. [emphasis added]
… To make formatted data bases readily accessible to
users (especially casual users) who have little or no
training in programming we must provide the simplest
possible data structures and almost natural language. …
What could be a simpler, more universally needed, and
more universally understood data structure than a table?
Why not permit such users to view all the data in a data
base in a tabular way?”—CODD, E. F. Normalized Data
Base Structure: A Brief Tutorial. (1971).

Simplicity

“There is a large class of users who, while they are
not computer specialists, would be willing to learn
to interact with a computer in a reasonably high-
level, non-procedural query language. Examples of
such users are accountants, engineers, architects,
and urban planners. [emphasis added] It is for this
[emphasis added] class of users that SEQUEL is
intended.”—CHAMBERLIN, D. AND BOYCE, R. SEQUEL: A
Structured English Query Language (1974).

The Target Audience

http://www.almaden.ibm.com/cs/people/chamberlin/sequel-1974.pdf
http://www.almaden.ibm.com/cs/people/chamberlin/sequel-1974.pdf

“Codd gave a seminar and a lot of us went to listen to him. This was as
I say a revelation for me because Codd had a bunch of queries that
were fairly complicated queries and since I’d been studying CODASYL, I
could imagine how those queries would have been represented in
CODASYL by programs that were five pages long that would navigate
through this labyrinth of pointers and stuff. Codd would sort of write
them down as one-liners. These would be queries like, “Find the
employees who earn more than their managers.” He just whacked
them out and you could sort of read them, and they weren’t
complicated at all, and I said, “Wow.” [emphasis added] This was kind
of a conversion experience for me, that I understood what the
relational thing was about after that.—Donald Chamberlin, the creator
of the SQL language in The 1995 SQL Reunion: People, Projects, and
Politics

Productivity

http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-1997-018.pdf
http://www.hpl.hp.com/techreports/Compaq-DEC/SRC-TN-1997-018.pdf

“The large, integrated data banks of the future will contain
many relations of various degrees in stored form. It will not be
unusual for this set of stored relations to be redundant. Two
types of redundancy are defined and discussed. One type may
be employed to improve accessibility of certain kinds of
information which happen to be in great demand. When
either type of redudnancy exists, those responsible for control
of the data bank should know about it and have some means
of detecting any “logical” inconsistencies in the total set of
stored relations. Consistency checking might be helpful in
tracking down unauthorized (and possibly fraudulent) changes
in the data bank contents.”—CODD, E. F. Derivability,
Redundancy and Consistency of Relations Stored in Large Data
Banks. (1969).

Derivability, Redundancy and
Consistency of Relations

You are allowed to teach a certain course only if:
1. You have been employed for at least one

year, or
2. You have attended that course first and the

trainer of that course offering attends your
first teach as participant

—Example from Applied Mathematics for
Database Professionals by Lex de Haan and Toon
Koppelaars

Assertions

http://www.amazon.com/Applied-Mathematics-Database-Professionals-Haan/dp/1430242841/
http://www.amazon.com/Applied-Mathematics-Database-Professionals-Haan/dp/1430242841/

CREATE ASSERTION employees_a1
AS CHECK
(
 (SELECT COUNT(*) FROM employees) >= 50
)

CREATE ASSERTION

CREATE ASSERTION employees_departments_fk
AS CHECK
(
 NOT EXISTS
 (
 SELECT * FROM employees e
 WHERE NOT EXISTS
 (
 SELECT * FROM departments d
 WHERE d.department_id = e.department_id
)
)
)

CREATE ASSERTION

The relational model is sacred because it gives
application software developers the ability

to assert and enforce consistency
of data in databases.

Take-Home Message

NOSQL AND BIG DATA FOR
THE ORACLE DBA

The mistakes of the relational camp

“Future users of large data banks must be
protected from having to know how the data is
organized in the machine (the internal
representation).”—CODD, E. F. A relational model
of data for large shared data banks. (1970).

Mistake #1—De-emphasizing
physical database design

http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf
http://www.nocoug.org/Journal/NoCOUG_Journal_201111.pdf

Questionable Beliefs

• DBAs bear chief responsibility for the performance of SQL statements.
• Applications should be designed without reference to the way data is

stored, e.g., index organized tables, hash clusters, partitions, etc.
• Application programmers should not tailor their SQL statements to make

use of existing indexes. DBAs should instead create traps to catch badly
performing SQL at runtime and create new indexes as necessary to make
them perform better.

• It is not necessary to review the Query Execution Plan of an SQL statement
before releasing it into a production environment. It is further not
necessary to freeze the Query Execution Plan of an SQL statement before
releasing it into a production environment. It is desirable that Query
Execution Plans change in response to changes in the statistical
information that the query optimizer relies upon. Such changes are always
for the better.

• The most common cause of poorly performing SQL is the failure of the
DBA to collect statistical information on the distribution of data for the use
of the query optimizer. This statistical information should be refreshed
frequently.

10/9/2013 46

“There is a large class of users who, while they
are not computer specialists, would be willing to
learn to interact with a computer in a
reasonably high-level, non-procedural query
language. Examples of such users are
accountants, engineers, architects, and urban
planners. It is for this class of users that SEQUEL
is intended.” CHAMBERLIN, D. AND BOYCE, R.
SEQUEL: A Structured English Query Language
(1974).

The real target audience for SQL

http://www.almaden.ibm.com/cs/people/chamberlin/sequel-1974.pdf

Mistake #2—Discarding nested
relations

Normalized set Normalized set

• employee (
 employee#,
 name,
 birthdate,
 jobhistory (
 jobdate,
 title,
 salaryhistory(salarydate, salary)
)
 children (childname, birthyear)
)

• employee (man#, name,
birthdate, jobhistory,
children)

• jobhistory (man#, jobdate,
title, salaryhistory)

• salaryhistory (man#,
jobdate, salarydate, salary)

• children (man#, childname,
birthyear)

• “A relation whose domains are all simple can be
represented in storage by a two-dimensional column-
homogeneous array … Some more complicated data
structure is necessary for a relation with one or more
nonsimple domains.”

• “The simplicity of the array representation which becomes
feasible when all relations are cast in normal form is not
only an advantage for storage purposes but also for
communication of bulk data between systems which use
widely different representations of the data.”

• “The second-order predicate calculus (rather than first-
order) is needed because the domains on which relations
are defined may themselves have relations as elements.”

Dr. Codd’s Justifications for First
Normal Form

“Using [flat] tables to store objects is like driving
your car home and then disassembling it to put
it in the garage. It can be assembled again in the
morning, but one eventually asks whether this is
the most efficient way to park a car.”—DYSON, E.
Review 1.0. (September 1988).

The Problem With Flat Tables

• … each stored table should occupy one physical file
• … data should be stored in row-major order
• … stored tables have only one storage representation

each
• … data should be stored in normalized form only
• … a single data block only contain data from a single

table
• … data should not be stored in compact forms

However, Codd never said that …

“Clearly, the majority of users should not have
to learn either the relational calculus or algebra
in order to interact with data bases. However,
requesting data by its properties is far more
natural than devising a particular algorithm or
sequence of operations for its retrieval. Thus, a
calculus-oriented language provides a good
target language for a more user-oriented source
language.” —CODD, E. F. Relational Completeness
of Data Base Sublanguages. (1972)

Mistake #3—Favoring Relational
Calculus over Relational Algebra

Relational Calculus v/s
Relational Algebra

Relational Calculus Relational Algebra

SELECT
 first_name,
 last_name
FROM employees mgr
WHERE EXISTS (
 SELECT *
 FROM employees emp
 WHERE emp.manager_id =
mgr.employee_id
 AND emp.salary > mgr.salary
)

SELECT DISTINCT
 mgr.first_name,
 mgr.last_name
FROM employees mgr
INNER JOIN employees emp
ON emp.manager_id =
mgr.employee_id
WHERE emp.salary >
mgr.salary

“I became interested in the CBO’s selectivity
calculations trying to understand why it comes up
with some of the ridiculously low cardinality
estimates (like 1 when in reality there are 80,000+)
which then lead to disastrous access plans that take
hours, provided they finish at all, instead of minutes
or seconds.”—Wolfgang Breitling, author of Tuning
by Cardinality Feedback
(http://asktom.oracle.com/pls/apex/f?p=100:11:0:::
:P11_QUESTION_ID:4344365159075#62615910223
23)

Heard on the AskTom Forum

http://asktom.oracle.com/pls/apex/f?p=100:11:0::::P11_QUESTION_ID:4344365159075
http://asktom.oracle.com/pls/apex/f?p=100:11:0::::P11_QUESTION_ID:4344365159075
http://asktom.oracle.com/pls/apex/f?p=100:11:0::::P11_QUESTION_ID:4344365159075

“Normalization is a step-by-step reversible process
of replacing a given collection of relations by
successive collections in which the relations have a
progressively simpler and more regular structure.
The objectives of normalization are … To free the
collection of relations from undesirable insertion,
update and deletion dependencies” —CODD, E. F.
Normalized Data Base Structure: A Brief Tutorial.
(1971).

Mistake #4—Equating the
normalized set with the stored set

• Unavailable in Oracle Database, SQL Server,
DB2, MySQL, and PostgreSQL

• Limited support in Oracle Rdb
– The predicate in a CHECK table constraint can

refer directly to any column in the table and can
refer to columns in other tables in the database
through column select expressions in the
predicate.

Mistake #6—Ignoring SQL-92 CREATE
ASSERTION

http://www.oracle.com/technetwork/products/rdb/overview/index.html

“We don’t use databases. We don’t use indexes. We
store all our data in compressed text files. Each
compressed text file contains one year of data for
one location. There is a separate subdirectory for
each year. We have a terabyte of data going back to
1901 so we currently have 113 subdirectories. The
performance is just fine, thank you.”
http://iggyfernandez.wordpress.com/2013/01/22/
we-dont-use-databases-we-dont-use-indexes/

We Don’t Use Databases—A story

http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/
http://iggyfernandez.wordpress.com/2013/01/22/we-dont-use-databases-we-dont-use-indexes/

• Limited subset of SQL
• SQL procedures compiled and linked into the

execution engine
• Sharding
• Replication
• Only one transaction operates in a shard at a

time
• No locking, no latching, no concurrency, no

redo

Bonus Slide—
NewSQL from VoltDB

• The first factor is the buyer’s performance requirements …
Only if the performance requirements are extremely severe
should buyers rule out present relational DBMS products on
this basis. [emphasis added] Even then buyers should design
performance tests of their own, rather than rely on vendor-
designed tests or vendor-declared strategies.

• The second factor is reduced costs for developing new
databases and new application programs …

• The third factor is protecting future investments in application
programs by acquiring a DBMS with a solid theoretical
foundation

CODD, E. F. An Evaluation Scheme for Database Management
Systems that are claimed to be Relational. (1985)

Bonus Slide—
NoSQL Buyer’s Guide

• Amazon requirements: Extreme performance,
extreme scalability, and extreme availability

• Amazon solution: Functional segmentation,
Sharding, Multi-master replication, BLOBs

• eBay has the same goals as Amazon but uses
Oracle and SQL for its e-commerce platform

Recap

Clusters

• Data from multiple tables stored in the same
block

• Hash clusters and indexed clusters
• Clustered tables can be indexed
• No join penalty
• Can define “object-relational” views and

INSTEAD OF triggers

10/9/2013 62

Mistakes of the Relational Camp

• De-emphasizing physical database design
• Discarding nested relations
• Favoring relational calculus over relational

algebra
• Equating the normalized set with the stored

set
• Marrying relational theory to ACID DBMS
• Ignoring SQL-92 CREATE ASSERTION

10/9/2013 63

The relational model is sacred because it gives
application software developers the ability to

assert and enforce consistency
of data in databases.

Take-Home Message

THANK YOU!

Q & A

	NoSQL and Big Data �for the Oracle DBA
	Northern California �Oracle Users Group
	Objectives
	Non-Objectives
	NoSQL and Big Data for �the Oracle DBA
	Dynamo Requirements
	Extreme Availability
	Extreme Performance
	Extreme Scalability
	Dynamo Solution—�Functional Segmentation
	Dynamo Solution—�Sharding
	Dynamo Solution—�Replication
	Dynamo Solution—�BLOBs
	Dynamo Solution�Summary
	Amazon v/s eBay
	NoSQL and Big Data for �the Oracle DBA
	Zeroth Normal Form
	First Normal Form
	Oracle Table Clusters
	Oracle Table Clusters�Example
	Oracle Table Clusters�Example
	Object-Relational View
	INSTEAD OF Triggers
	Codd on Eventual Consistency
	NoSQL and Big Data for �the Oracle DBA
	The NoSQL Landscape
	Document Database—MongoDB
	Graph Database—Shortest Path Problem
	Graph Database—Social Networks
	Map/Reduce
	Map/Reduce
	The Big Secret of Big Data
	Resources
	NoSQL and Big Data for �the Oracle DBA
	Simplicity?
	Simplicity
	The Target Audience
	Productivity
	Derivability, Redundancy and Consistency of Relations
	Assertions
	CREATE ASSERTION
	CREATE ASSERTION
	Take-Home Message
	NoSQL and Big Data for �the Oracle DBA
	Mistake #1—De-emphasizing physical database design
	Questionable Beliefs
	The real target audience for SQL
	Mistake #2—Discarding nested relations
	Dr. Codd’s Justifications for First Normal Form
	The Problem With Flat Tables
	However, Codd never said that …
	Mistake #3—Favoring Relational Calculus over Relational Algebra
	Relational Calculus v/s �Relational Algebra
	Heard on the AskTom Forum
	Mistake #4—Equating the normalized set with the stored set
	Mistake #6—Ignoring SQL-92 CREATE ASSERTION
	We Don’t Use Databases—A story
	Bonus Slide—�NewSQL from VoltDB
	Bonus Slide—�NoSQL Buyer’s Guide
	Recap
	Clusters
	Mistakes of the Relational Camp
	Take-Home Message
	Thank You!
	Q & A

