
Vol. 24, No. 1 · FEBRUARY 2010	 $15

Oracle Performance
Survival Guide
A review of Guy Harrison’s
new book.

See page 7.

Not the SQL of My
Kindergarten Days
Iggy Fernandez waxes
nostalgic.

See page 17.

Much more inside . . .

Spotlight on Tuning
An interview with Guy
Harrison.

See page 4.

Find New Perspectives
at NoCOUG

Official Publication of the Northern California Oracle Users Group

J O U R N A L

NORTHERN CALIFO
R

N
IA

O
R

A
C

LE

USERS GROUP

✸

17The NoCOUG Journal

T
he relational model was invented by IBM researcher
Edgar Codd when I was in kindergarten. Here’s a
picture of my kindergarten class; one of those cute
little tykes is me.

Codd made proposals for “data base sublanguages” in his
paper Relational Completeness of Data Base Sublanguages
(1972). As IBM researcher Donald Chamberlin recalled later:
[Codd] gave a seminar and a lot of us went to listen to him. This
was as I say a revelation for me because Codd had a bunch of
queries that were fairly complicated queries and since I’d been
studying CODASYL, I could imagine how those queries would
have been represented in CODASYL by programs that were five
pages long that would navigate through this labyrinth of pointers
and stuff. Codd would sort of write them down as one-liners.
These would be queries like, “Find the employees who earn more
than their managers.” He just whacked them out and you could
sort of read them, and they weren’t complicated at all, and I said,
“Wow.” This was kind of a conversion experience for me, that I
understood what the relational thing was about after that.

Donald Chamberlin and fellow IBM researcher Raymond
Boyce went on to implement the first “data base sublanguage”
based on Codd’s proposals and described it in a short paper
titled SEQUEL: A Structured English Query Language (1974).
The acronym SEQUEL was later shortened to SQL because
SEQUEL was a trademarked name; this means that the correct
pronunciation of SQL is sequel not es-cue-el. Codd’s paper

Not the SQL of My
Kindergarten Days

by Iggy Fernandez
Iggy Fernandez

and Chamberlin’s paper can be downloaded from the Internet;
they were written using manual typewriters, and Codd’s paper
even contains handwritten corrections.

The SQL of today is much more powerful than the SQL of
my kindergarten days. The latest ANSI SQL standard com-
prises thousands of pages and the one-liners of Codd’s day
have given way to hundred-liners that solve extremely complex
problems. In the example that follows, we demonstrate several
powerful features of SQL, including common table expres-
sions, scalar subqueries, pivoting, recursive common table ex-
pressions, outer joins, and analytic functions. Our assignment
is to create a database load profile in time series format. A
typical STATSPACK report only lists a point-in-time snapshot
of such a database load profile, and it would therefore be use-
ful to review the history of each component, such as logical
reads or physical reads.

The data for the problem is available in the stats$snapshot
table (snap_id, snap_time, startup_time) and the stats$sysstat
table (snap_id, name, value), both of which are part of the
STATSPACK schema. The data values in stats$sysstat increase
monotonically for the life of the database and start again from
zero every time the database is restarted. Here is a sample of
some raw data.

Load Profile	 Per Second	 Per Transaction

Redo size	 901,736.28	 20,043.04

Logical reads	 247,983.21	 5,511.96

Block changes	 5,178.77	 115.11

Physical reads	 2,282.71	 50.74

Physical writes	 732.79	 16.29

User calls	 2,491.71	 55.38

Parses	 2,255.89	 50.14

Hard parses	 26.79	 0.60

Sorts	 1,759.71	 39.11

Logons	 3.32	 0.07

Executes	 12,469.57	 277.16

Transactions	 4.99

S Q L C or n er

I remember, I remember
The fir-trees dark and high;
I used to think their slender tops
Were close against the sky:

It was a childish ignorance,
But now ’tis little joy
To know I’m farther off from heaven
Than when I was a boy.

—Thomas Hood [1799–1845]

18 February 2010

What we now need is the time series representation of the
above data. Here is an example showing just a few of the col-
umns. We used interpolation techniques to produce exactly
one data point per hour. Also, we properly handled situations
in which the database was restarted and the values in the data-
base load profile were reset to zero.

From the time series data above, we can then generate nice
graphs using our charting tool of choice such as Excel or
RRDtool. Here are a couple of examples:

Snap Id	 Snap Time	 Startup Time

41566	 12/14/2009 08:53	 11/3/2009 22:48

41576	 12/14/2009 09:23	 11/3/2009 22:48

41586	 12/14/2009 09:53	 11/3/2009 22:48

Snap Id	 Name	 Value

41566	 session logical reads	 4,272,750,011

41576	 session logical reads	 4,711,935,207

41586	 session logical reads	 5,158,057,003

41566	 physical reads	 57,151,567

41576	 physical reads	 61,038,074

41586	 physical reads	 65,144,663

41566	 user commits	 1,006,064

41576	 user commits	 1,082,359

41586	 user commits	 1,159,213

41566	 user rollbacks	 54,483

41576	 user rollbacks	 58,524

41586	 user rollbacks	 62,607

The first nifty SQL feature displayed in our solution is the
“common table expression” (CTE). A CTE is similar to an
“inline view” but offers several advantages. First, it divides the
code into manageable pieces; long SQL statements that don’t
use common table expressions are very difficult to debug and
maintain. There is also a performance consideration; the data
of the CTE can be used multiple times within a SQL statement,
but Oracle will not need to repeatedly recompute the CTE.
Here is a list of the common table expressions in our solution;
their names indicate their purpose and help the reader under-
stand how the query progresses toward the final result.

	 constants

	 snaphots

	 sysstat

	 pivoted_sysstat

	 numbers

	 interpolation_formulas

	 interpolated_sysstat

The other nifty feature seen below is “scalar subqueries”; a
SQL query returning a single value can be placed wherever a
“scalar”—a single value—is required.

WITH

constants AS

(

 SELECT

 (
 SELECT min(snap_id)
 FROM stats$snapshot
 WHERE snap_time >= trunc(to_date('&&begin_date')) - 1
)
 AS begin_snap_id,

 (
 SELECT max(snap_id)
 FROM stats$snapshot
 WHERE snap_time <= trunc(to_date('&&begin_date')) + 8
)
 AS end_snap_id

 FROM dual

),

Here are the results of the above code segment:

Timestamp	 Logical Reads	 Physical Reads	 Transactions
	 Per Second	 Per Second	 Per Second

12/14/2009	 258,450.28	 2,047.59	 46.68
09:00

12/14/2009	 247,301.23	 2,254.32	 45.07
10:00

12/14/2009	 246,408.77	 2,293.54	 45.35
11:00

19The NoCOUG Journal

We next identify a subset of data from the stats$snapshot
table. Scalar subqueries are once again on display. Notice how
this CTE refers to the previous one.

snapshots AS

(

 SELECT
 snap_id,
 snap_time,
 startup_time
 FROM stats$snapshot

 WHERE dbid = &&dbid
 AND instance_number = &&instance_number
 AND snap_id >= (SELECT begin_snap_id FROM constants)
 AND snap_id <= (SELECT end_snap_id FROM constants)

),

Here are the results—with some rows omitted—of the
above code segment:

We next identify a subset of data from the stats$sysstat
table. Scalar subqueries are once again on display.

sysstat AS

(

 SELECT
 snap_id,
 name,
 value AS value
 FROM stats$sysstat

 WHERE dbid = &&dbid
 AND instance_number = &&instance_number
 AND snap_id >= (SELECT begin_snap_id FROM constants)
 AND snap_id <= (SELECT end_snap_id FROM constants)
 AND name IN
 (
 'session logical reads',
 'physical reads',
 'user rollbacks',
 'user commits'
)

),

Here are the results—with some rows omitted—of the
above code segment:

The next SQL feature on display is the PIVOT operator,
which was introduced in Oracle Database 11gR1. Pivoting is
well known to Excel power users; it converts rows of data into
a two-dimensional matrix. More information on the PIVOT
operator and its sister operator, UNPIVOT, can be found in
Arup Nanda’s article Oracle Database 11g: The Top New Features
for DBAs and Developers.

pivoted_sysstat AS

(

 SELECT
 snap_id,
 logical_reads AS logical_reads,
 physical_reads AS physical_reads,
 user_rollbacks + user_commits AS transactions
 FROM
 (
 SELECT *
 FROM sysstat
)
 PIVOT
 (
 SUM(value)
 FOR NAME IN
 (
 'session logical reads' AS logical_reads,
 'physical reads' AS physical_reads,
 'user rollbacks' AS user_rollbacks,
 'user commits' AS user_commits
)
)

),

Here are the results—with some rows omitted—of the
above code segment:

Here is the Oracle Database 10g version of the above code.
It requires a very unintuitive use of the DECODE function.

pivoted_sysstat AS

(

 SELECT

 snap_id,

 sum(decode(name,'session logical reads',value,0))
 AS logical_reads,

 sum(decode(name,'physical reads',value,0))
 AS physical_reads,

 sum(decode(name,'user rollbacks',value,'user commits',value,0))

Snap ID	 Snap Time	 Startup Time

41566	 12/14/2009 08:53	 11/3/2009 22:48

41576	 12/14/2009 09:23	 11/3/2009 22:48

41586	 12/14/2009 09:53	 11/3/2009 22:48

41576	 user commits	 1,082,359

41576	 user rollbacks	 58,524	

41586	 physical reads	 65,144,663

41586	 session logical reads 	 5,158,057,003

41586	 user commits	 1,159,213

41586	 user rollbacks	 62,607

Snap ID	 Logical Reads	 Physical Reads	 Transactions

41566	 4,272,750,011	 57,151,567	 1,060,547

41576	 4,711,935,207	 61,038,074	 1,140,883

41586	 5,158,057,003	 65,144,663	 1,221,820

Begin Snap Id	 End Snap Id

41323	 44337

Snap Id	 Name	 Value

41566	 physical reads	 57,151,567

41566	 session logical reads 	 4,272,750,011

41566	 user commits	 1,006,064

41566	 user rollbacks	 54,483

41576	 physical reads	 61,038,074

41576	 session logical reads 	 4,711,935,207

20 February 2010

 AS transactions

 FROM sysstat
 GROUP BY snap_id

),

Next we have a simple example of a “recursive common
table expression.” Oracle has provided recursive functionality
using CONNECT BY for a long time, but recursive common
table expressions are new in Oracle Database 11gR2 and can
handle problems that CONNECT BY could not. A recursive
CTE takes the form of one or more “anchor members” plus a
recursive member that invokes the CTE repeatedly until a ter-
minating condition is encountered. A good explanation of re-
cursive common table expressions can be found in an article
by Jonathan Gennick titled Understanding the WITH Clause.

numbers(n) AS

(
 SELECT 1
 FROM dual

 UNION ALL

 SELECT n + 1
 FROM numbers
 WHERE n < 168
),

Here are the results—with some rows omitted—of the
above code segment:

N

1

2

3

4

5

For contrast, here is the Oracle Database 10g version using
the CONNECT BY clause.

numbers AS

(
 SELECT level AS n
 FROM dual
 CONNECT BY level <= 169
),

The next code section is fairly long and illustrates three in-
teresting features. The CASE expression is a great advancement
over the DECODE function and allows the evaluation of com-
plex Boolean expressions. “Windowing functions”—a subclass
of analytic functions—allow the evaluation of data contained
in specified rows other than the current row. Finally, SQL now
offers full support for outer joins of all flavors, including LEFT
OUTER JOIN, RIGHT OUTER JOIN, and FULL OUTER
JOIN; left outer joins are used below.

interpolation_formulas AS

(

 SELECT

 temp.timestamp,

 CASE
 WHEN s1.startup_time = s2.startup_time
 THEN s1.startup_time
 ELSE NULL
 END AS startup_time,

 CASE
 WHEN s1.startup_time = s2.startup_time
 THEN s2.snap_id
 ELSE NULL
 END AS next_snap_id,

 CASE
 WHEN s1.startup_time = s2.startup_time
 THEN (timestamp - s1.snap_time) / (s2.snap_time - s1.snap_time)
 ELSE NULL
 END AS fraction

 FROM

 (

 SELECT

 snap_id,
 snap_time AS timestamp,
 LAST_VALUE(snap_id IGNORE NULLS)
 OVER (ORDER BY snap_time ROWS BETWEEN UNBOUNDED
PRECEDING AND 1 PRECEDING)
 AS previous_snap_id,
 FIRST_VALUE(snap_id IGNORE NULLS)
 OVER (ORDER BY snap_time ROWS BETWEEN 1 FOLLOWING
AND UNBOUNDED FOLLOWING)
 AS next_snap_id

 FROM

 (
 SELECT snap_id, snap_time FROM snapshots
 UNION ALL
 SELECT NULL, trunc(to_date('&&begin_date')) + (n - 2) * 1/24 FROM
numbers
)

) temp

 LEFT OUTER JOIN snapshots s1
 ON (temp.previous_snap_id = s1.snap_id)

 LEFT OUTER JOIN snapshots s2
 ON (temp.next_snap_id = S2.snap_id)

 WHERE temp.snap_id IS NULL

),

Here are the results—with some rows omitted—of the
above code segment:

We’re now ready to perform some interpolation magic.
LEFT OUTER JOIN is once again on display in the following
code section.

Timestamp	 Startup	 Previous	 Next	 Fraction
	 Time	 Snap ID	 Snap ID

12/14/2009	 11/3/2009	 41566	 41576	 0.230940456
09:00	 22:48

12/14/2009	 11/3/2009	 41586	 41596	 0.232648529
10:00	 22:48

12/14/2009	 11/3/2009	 41606	 41616	 0.232686981
11:00	 22:48

21The NoCOUG Journal

interpolated_sysstat AS

(

 SELECT

 timestamp,

 startup_time,

 ps1.logical_reads
 + if.fraction * (ps2.logical_reads - ps1.logical_reads)
 AS logical_reads,

 ps1.physical_reads
 + if.fraction * (ps2.physical_reads - ps1.physical_reads)
 AS physical_reads,

 ps1.transactions
 + if.fraction * (ps2.transactions - ps1.transactions)
 AS transactions

 FROM

 interpolation_formulas if

 LEFT OUTER JOIN pivoted_sysstat ps1
 ON (if.previous_snap_id = ps1.snap_id)

 LEFT OUTER JOIN pivoted_sysstat ps2
 ON (if.next_snap_id = ps2.snap_id)

),

Here are the results—with some rows omitted—of the
above code segment:

The next section uses the LAG analytic function to com-
pute the difference between data values in adjacent rows.

delta_sysstat AS

(

 SELECT

 timestamp,

 logical_reads - lag(logical_reads)
 OVER (PARTITION BY startup_time ORDER BY timestamp)
 AS logical_reads,

 physical_reads - lag(physical_reads)
 OVER (PARTITION BY startup_time ORDER BY timestamp)
 AS physical_reads,

 transactions - lag(transactions)
 OVER (PARTITION BY startup_time ORDER BY timestamp)
 AS transactions

 FROM interpolated_sysstat

)

Here are the results—with some rows omitted—of the
above code segment:

We’ve written a lot of code so far but it was always in un-
manageable chunks. We’re finally ready to display the results of
the query; the final section is equally short and sweet.

SELECT

 timestamp,

 logical_reads / 3600
 AS logical_reads_per_second,

 physical_reads / 3600
 AS physical_reads_per_second,

 transactions / 3600
 AS transactions_per_second,

 logical_reads / transactions
 AS logical_reads_per_transaction,

 physical_reads / transactions
 AS physical_reads_per_transaction

FROM delta_sysstat
WHERE timestamp >= trunc(to_date('&&begin_date'))
ORDER BY timestamp;

Here are the final results with some rows and columns
omitted:

I hope you enjoyed this little tour-by-example of the newer
features of SQL. I didn’t have enough space or time to do them
any real justice, but you can easily find more information
about them on the Internet. You can download all the code in
this article from my blog. s

Iggy Fernandez is an Oracle DBA with Database Specialists and
has more than ten years of experience in Oracle database admin-
istration. He is the editor of the quarterly journal of the Northern
California Oracle Users Group (NoCOUG) and the author of
Beginning Oracle Database 11g Administration (Apress, 2009).
He blogs at iggyfernandez.wordpress.com.

Copyright © 2010, Iggy Fernandez

Timestamp	 Logical	 Physical	 Transactions
	 Reads	 Reads

12/14/2009	 930,421,023.36	 7,371,308.57	 168,060.61
09:00

12/14/2009	 890,284,410.95	 8,115,558.97	 162,247.99
10:00

12/14/2009	 887,071,578.94	 8,256,732.47	 163,268.08
11:00

Timestamp	 Logical Reads	 Physical Reads	 Transactions
	 Per Second	 Per Second	 Per Second

12/14/2009	 258,450.28	 2,047.59	 46.68
09:00

12/14/2009	 247,301.23	 2,254.32	 45.07
10:00

12/14/2009	 246,408.77	 2,293.54	 45.35
11:00

Timestamp	 Startup Time	 Logical Reads	 Physical Reads	 Transactions

12/14/2009	 11/3/2009	 4,374,175,640.57	 58,049,118.70	 1,079,099.83
09:00	 22:48

12/14/2009	 11/3/2009	 5,264,460,051.52	 66,164,677.67	 1,241,347.82
10:00	 22:48

12/14/2009	 11/3/2009	 6,151,531,630.47	 74,421,410.14	 1,404,615.90
11:00	 22:48

	NoCOUG_201002cvr_FYI.pdf

